File size: 3,020 Bytes
f6f4b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb0b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f4b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: mit
license_link: https://huggingface.co./microsoft/phi-4/resolve/main/LICENSE
language:
- en
pipeline_tag: text-generation
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- llama-cpp
- gguf-my-repo
inference:
  parameters:
    temperature: 0
widget:
- messages:
  - role: user
    content: How should I explain the Internet?
library_name: transformers
base_model: microsoft/phi-4
---

# Triangle104/phi-4-Q5_K_S-GGUF
This model was converted to GGUF format from [`microsoft/phi-4`](https://huggingface.co./microsoft/phi-4) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./microsoft/phi-4) for more details on the model.

---
Model details:
-
Developers
-
Microsoft Research

Description
-
phi-4 is a state-of-the-art open model built upon a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach was to ensure that small capable models were trained with data focused on high quality and advanced reasoning.

phi-4 underwent a rigorous enhancement and alignment process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures

Architecture
-
14B parameters, dense decoder-only Transformer model

Inputs
-
Text, best suited for prompts in the chat format

Context length
-
16K tokens

GPUs
-
1920 H100-80G

Training time
-
21 days

Training data
-
9.8T tokens

Outputs
-
Generated text in response to input

Dates
-
October 2024 – November 2024

Status
-
Static model trained on an offline dataset with cutoff dates of June 2024 and earlier for publicly available data

Release date
-
December 12, 2024

License
-
MIT

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/phi-4-Q5_K_S-GGUF --hf-file phi-4-q5_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/phi-4-Q5_K_S-GGUF --hf-file phi-4-q5_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/phi-4-Q5_K_S-GGUF --hf-file phi-4-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/phi-4-Q5_K_S-GGUF --hf-file phi-4-q5_k_s.gguf -c 2048
```