--- license: apache-2.0 datasets: - qingy2024/FineQwQ-142k language: - en base_model: qingy2024/UwU-7B-Instruct pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # Triangle104/UwU-7B-Instruct-Q4_K_S-GGUF This model was converted to GGUF format from [`qingy2024/UwU-7B-Instruct`](https://huggingface.co./qingy2024/UwU-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./qingy2024/UwU-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/UwU-7B-Instruct-Q4_K_S-GGUF --hf-file uwu-7b-instruct-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/UwU-7B-Instruct-Q4_K_S-GGUF --hf-file uwu-7b-instruct-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/UwU-7B-Instruct-Q4_K_S-GGUF --hf-file uwu-7b-instruct-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/UwU-7B-Instruct-Q4_K_S-GGUF --hf-file uwu-7b-instruct-q4_k_s.gguf -c 2048 ```