--- language: - en license: mit tags: - moe pipeline_tag: text-generation model-index: - name: FusionNet_34Bx2_MoE results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.95 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.22 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.05 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.31 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.98 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.89 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE name: Open LLM Leaderboard --- # FusionNet_34Bx2_MoE Fine-tuned model on English language using MoE method. ## Model description The FusionNet_34Bx2_MoE is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The FusionNet_34Bx2_MoE has 60.8B parameters, and this model is fine-tuned. Enjoy! ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("TomGrc/FusionNet_34Bx2_MoE") model = AutoModelForCausalLM.from_pretrained("TomGrc/FusionNet_34Bx2_MoE") ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE) | Metric |Value| |---------------------------------|----:| |Avg. |77.07| |AI2 Reasoning Challenge (25-Shot)|72.95| |HellaSwag (10-Shot) |86.22| |MMLU (5-Shot) |77.05| |TruthfulQA (0-shot) |71.31| |Winogrande (5-shot) |83.98| |GSM8k (5-shot) |70.89|