TheBloke commited on
Commit
bf04c9e
·
1 Parent(s): 7847728

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +484 -0
README.md ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Steelskull/Lumosia-MoE-4x10.7
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Steel
6
+ model_name: Lumosia MoE 4X10.7
7
+ model_type: mixtral
8
+ prompt_template: '### System:
9
+
10
+
11
+ ### USER:{prompt}
12
+
13
+
14
+ ### Assistant:
15
+
16
+ '
17
+ quantized_by: TheBloke
18
+ tags:
19
+ - moe
20
+ - merge
21
+ - mergekit
22
+ - lazymergekit
23
+ - DopeorNope/SOLARC-M-10.7B
24
+ - maywell/PiVoT-10.7B-Mistral-v0.2-RP
25
+ - kyujinpy/Sakura-SOLAR-Instruct
26
+ - jeonsworld/CarbonVillain-en-10.7B-v1
27
+ ---
28
+ <!-- markdownlint-disable MD041 -->
29
+
30
+ <!-- header start -->
31
+ <!-- 200823 -->
32
+ <div style="width: auto; margin-left: auto; margin-right: auto">
33
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
34
+ </div>
35
+ <div style="display: flex; justify-content: space-between; width: 100%;">
36
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
37
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
38
+ </div>
39
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
41
+ </div>
42
+ </div>
43
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
44
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
45
+ <!-- header end -->
46
+
47
+ # Lumosia MoE 4X10.7 - GGUF
48
+ - Model creator: [Steel](https://huggingface.co/Steelskull)
49
+ - Original model: [Lumosia MoE 4X10.7](https://huggingface.co/Steelskull/Lumosia-MoE-4x10.7)
50
+
51
+ <!-- description start -->
52
+ ## Description
53
+
54
+ This repo contains GGUF format model files for [Steel's Lumosia MoE 4X10.7](https://huggingface.co/Steelskull/Lumosia-MoE-4x10.7).
55
+
56
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
57
+
58
+ <!-- description end -->
59
+ <!-- README_GGUF.md-about-gguf start -->
60
+ ### About GGUF
61
+
62
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
63
+
64
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
65
+
66
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
67
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
68
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
69
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
70
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
71
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
72
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
73
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
74
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
75
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
76
+
77
+ <!-- README_GGUF.md-about-gguf end -->
78
+ <!-- repositories-available start -->
79
+ ## Repositories available
80
+
81
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-AWQ)
82
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GPTQ)
83
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF)
84
+ * [Steel's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Steelskull/Lumosia-MoE-4x10.7)
85
+ <!-- repositories-available end -->
86
+
87
+ <!-- prompt-template start -->
88
+ ## Prompt template: Lumosia
89
+
90
+ ```
91
+ ### System:
92
+
93
+ ### USER:{prompt}
94
+
95
+ ### Assistant:
96
+
97
+ ```
98
+
99
+ <!-- prompt-template end -->
100
+
101
+
102
+ <!-- compatibility_gguf start -->
103
+ ## Compatibility
104
+
105
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
106
+
107
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
108
+
109
+ ## Explanation of quantisation methods
110
+
111
+ <details>
112
+ <summary>Click to see details</summary>
113
+
114
+ The new methods available are:
115
+
116
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
117
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
118
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
119
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
120
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
121
+
122
+ Refer to the Provided Files table below to see what files use which methods, and how.
123
+ </details>
124
+ <!-- compatibility_gguf end -->
125
+
126
+ <!-- README_GGUF.md-provided-files start -->
127
+ ## Provided files
128
+
129
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
130
+ | ---- | ---- | ---- | ---- | ---- | ----- |
131
+ | [lumosia-moe-4x10.7.Q2_K.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q2_K.gguf) | Q2_K | 2 | 12.02 GB| 14.52 GB | smallest, significant quality loss - not recommended for most purposes |
132
+ | [lumosia-moe-4x10.7.Q3_K_S.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q3_K_S.gguf) | Q3_K_S | 3 | 15.57 GB| 18.07 GB | very small, high quality loss |
133
+ | [lumosia-moe-4x10.7.Q3_K_M.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q3_K_M.gguf) | Q3_K_M | 3 | 15.70 GB| 18.20 GB | very small, high quality loss |
134
+ | [lumosia-moe-4x10.7.Q3_K_L.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q3_K_L.gguf) | Q3_K_L | 3 | 15.83 GB| 18.33 GB | small, substantial quality loss |
135
+ | [lumosia-moe-4x10.7.Q4_0.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q4_0.gguf) | Q4_0 | 4 | 20.34 GB| 22.84 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
136
+ | [lumosia-moe-4x10.7.Q4_K_S.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q4_K_S.gguf) | Q4_K_S | 4 | 20.35 GB| 22.85 GB | small, greater quality loss |
137
+ | [lumosia-moe-4x10.7.Q4_K_M.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q4_K_M.gguf) | Q4_K_M | 4 | 20.37 GB| 22.87 GB | medium, balanced quality - recommended |
138
+ | [lumosia-moe-4x10.7.Q5_0.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q5_0.gguf) | Q5_0 | 5 | 24.84 GB| 27.34 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
139
+ | [lumosia-moe-4x10.7.Q5_K_S.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q5_K_S.gguf) | Q5_K_S | 5 | 24.84 GB| 27.34 GB | large, low quality loss - recommended |
140
+ | [lumosia-moe-4x10.7.Q5_K_M.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q5_K_M.gguf) | Q5_K_M | 5 | 24.85 GB| 27.35 GB | large, very low quality loss - recommended |
141
+ | [lumosia-moe-4x10.7.Q6_K.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q6_K.gguf) | Q6_K | 6 | 29.62 GB| 32.12 GB | very large, extremely low quality loss |
142
+ | [lumosia-moe-4x10.7.Q8_0.gguf](https://huggingface.co/TheBloke/Lumosia-MoE-4x10.7-GGUF/blob/main/lumosia-moe-4x10.7.Q8_0.gguf) | Q8_0 | 8 | 38.36 GB| 40.86 GB | very large, extremely low quality loss - not recommended |
143
+
144
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
145
+
146
+
147
+
148
+ <!-- README_GGUF.md-provided-files end -->
149
+
150
+ <!-- README_GGUF.md-how-to-download start -->
151
+ ## How to download GGUF files
152
+
153
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
154
+
155
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
156
+
157
+ * LM Studio
158
+ * LoLLMS Web UI
159
+ * Faraday.dev
160
+
161
+ ### In `text-generation-webui`
162
+
163
+ Under Download Model, you can enter the model repo: TheBloke/Lumosia-MoE-4x10.7-GGUF and below it, a specific filename to download, such as: lumosia-moe-4x10.7.Q4_K_M.gguf.
164
+
165
+ Then click Download.
166
+
167
+ ### On the command line, including multiple files at once
168
+
169
+ I recommend using the `huggingface-hub` Python library:
170
+
171
+ ```shell
172
+ pip3 install huggingface-hub
173
+ ```
174
+
175
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
176
+
177
+ ```shell
178
+ huggingface-cli download TheBloke/Lumosia-MoE-4x10.7-GGUF lumosia-moe-4x10.7.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
179
+ ```
180
+
181
+ <details>
182
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
183
+
184
+ You can also download multiple files at once with a pattern:
185
+
186
+ ```shell
187
+ huggingface-cli download TheBloke/Lumosia-MoE-4x10.7-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
188
+ ```
189
+
190
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
191
+
192
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
193
+
194
+ ```shell
195
+ pip3 install hf_transfer
196
+ ```
197
+
198
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
199
+
200
+ ```shell
201
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Lumosia-MoE-4x10.7-GGUF lumosia-moe-4x10.7.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
202
+ ```
203
+
204
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
205
+ </details>
206
+ <!-- README_GGUF.md-how-to-download end -->
207
+
208
+ <!-- README_GGUF.md-how-to-run start -->
209
+ ## Example `llama.cpp` command
210
+
211
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
212
+
213
+ ```shell
214
+ ./main -ngl 35 -m lumosia-moe-4x10.7.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\n\n### USER:{prompt}\n\n### Assistant:"
215
+ ```
216
+
217
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
218
+
219
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
220
+
221
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
222
+
223
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
224
+
225
+ ## How to run in `text-generation-webui`
226
+
227
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
228
+
229
+ ## How to run from Python code
230
+
231
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
232
+
233
+ ### How to load this model in Python code, using llama-cpp-python
234
+
235
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
236
+
237
+ #### First install the package
238
+
239
+ Run one of the following commands, according to your system:
240
+
241
+ ```shell
242
+ # Base ctransformers with no GPU acceleration
243
+ pip install llama-cpp-python
244
+ # With NVidia CUDA acceleration
245
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
246
+ # Or with OpenBLAS acceleration
247
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
248
+ # Or with CLBLast acceleration
249
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
250
+ # Or with AMD ROCm GPU acceleration (Linux only)
251
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
252
+ # Or with Metal GPU acceleration for macOS systems only
253
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
254
+
255
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
256
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
257
+ pip install llama-cpp-python
258
+ ```
259
+
260
+ #### Simple llama-cpp-python example code
261
+
262
+ ```python
263
+ from llama_cpp import Llama
264
+
265
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
266
+ llm = Llama(
267
+ model_path="./lumosia-moe-4x10.7.Q4_K_M.gguf", # Download the model file first
268
+ n_ctx=4096, # The max sequence length to use - note that longer sequence lengths require much more resources
269
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
270
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
271
+ )
272
+
273
+ # Simple inference example
274
+ output = llm(
275
+ "### System:\n\n### USER:{prompt}\n\n### Assistant:", # Prompt
276
+ max_tokens=512, # Generate up to 512 tokens
277
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
278
+ echo=True # Whether to echo the prompt
279
+ )
280
+
281
+ # Chat Completion API
282
+
283
+ llm = Llama(model_path="./lumosia-moe-4x10.7.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
284
+ llm.create_chat_completion(
285
+ messages = [
286
+ {"role": "system", "content": "You are a story writing assistant."},
287
+ {
288
+ "role": "user",
289
+ "content": "Write a story about llamas."
290
+ }
291
+ ]
292
+ )
293
+ ```
294
+
295
+ ## How to use with LangChain
296
+
297
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
298
+
299
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
300
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
301
+
302
+ <!-- README_GGUF.md-how-to-run end -->
303
+
304
+ <!-- footer start -->
305
+ <!-- 200823 -->
306
+ ## Discord
307
+
308
+ For further support, and discussions on these models and AI in general, join us at:
309
+
310
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
311
+
312
+ ## Thanks, and how to contribute
313
+
314
+ Thanks to the [chirper.ai](https://chirper.ai) team!
315
+
316
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
317
+
318
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
319
+
320
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
321
+
322
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
323
+
324
+ * Patreon: https://patreon.com/TheBlokeAI
325
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
326
+
327
+ **Special thanks to**: Aemon Algiz.
328
+
329
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
330
+
331
+
332
+ Thank you to all my generous patrons and donaters!
333
+
334
+ And thank you again to a16z for their generous grant.
335
+
336
+ <!-- footer end -->
337
+
338
+ <!-- original-model-card start -->
339
+ # Original model card: Steel's Lumosia MoE 4X10.7
340
+
341
+
342
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/Qb88YeudOf7MYuGKTirXC.png)
343
+
344
+ # Lumosia-MoE-4x10.7
345
+
346
+ "Lumosia" was selected as its a MoE of Multiple SOLAR Merges so it really "Lights the way".... its 3am.
347
+
348
+ This is a very experimantal model. its a MoE of all good performing Solar models (based off of personal experiance not open leaderboard),
349
+
350
+ Why? Dunno whated to see what would happen
351
+
352
+ context is maybe 16k?
353
+
354
+ Chat-instruct breaks the model at the moment, not really sure why, even tho it will follow instructions.
355
+
356
+ Waiting on fix for quants of FrankenMoE
357
+
358
+
359
+ Template:
360
+ ```
361
+ ### System:
362
+
363
+ ### USER:{prompt}
364
+
365
+ ### Assistant:
366
+ ```
367
+
368
+
369
+ Settings:
370
+ ```
371
+ Temp: 1.0
372
+ min-p: 0.02-0.1
373
+ ```
374
+
375
+ Lumosia-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models:
376
+ * [DopeorNope/SOLARC-M-10.7B](https://huggingface.co/DopeorNope/SOLARC-M-10.7B)
377
+ * [maywell/PiVoT-10.7B-Mistral-v0.2-RP](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2-RP)
378
+ * [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
379
+ * [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
380
+
381
+ ## Evals:
382
+
383
+ * Pending
384
+
385
+ ## Examples:
386
+ ```
387
+ Example 1:
388
+
389
+ User:
390
+ Hello lumi, what is the meaning of life
391
+ in around 100 words.
392
+
393
+ Lumosia:
394
+ The meaning of life can vary greatly
395
+ depending on individual beliefs,
396
+ values, and experiences. One common
397
+ perspective suggests that the primary
398
+ purpose of life is to seek happiness,
399
+ fulfillment, and personal growth
400
+ through relationships
401
+ accomplishments, and spiritual
402
+ awareness. Living with integrity.
403
+ compassion, and gratitude while
404
+ making a positive impact on others
405
+ and the world around us can also
406
+ contribute to finding meaning in life
407
+ UItimately, the meaning of life is
408
+ subjective and unique to each
409
+ individual, who must define it for
410
+ themselves through exploration
411
+ reflection, and personal choice.
412
+
413
+ ```
414
+ ```
415
+ Example 2:
416
+
417
+ User:
418
+ Explain a MoE (Mixture of Experts) in
419
+ around 100 words
420
+
421
+ Lumosia:
422
+ A MoE, short for Mixture of Experts, is
423
+ a machine learning technique utilized
424
+ in ensemble learning. It involves
425
+ combining multiple specialist models
426
+ (experts) to optimize predictive
427
+ performance. Each expert focuses on
428
+ a subset of the input features or data
429
+ domains, making them specialized in
430
+ particular areas. Through a weighting
431
+ mechanism, like Gaussian Mixture
432
+ Model, the predictions of experts are
433
+ blended to produce a final result. MoE
434
+ models demonstrate effectiveness in
435
+ handling complex or ambiguous
436
+ inputs where a single model might
437
+ struggle. They are commonly used in
438
+ natural language processing.
439
+ computer vision, and speech synthesis.
440
+ ```
441
+
442
+ ## 🧩 Configuration
443
+
444
+ ```
445
+ yamlbase_model: DopeorNope/SOLARC-M-10.7B
446
+ gate_mode: hidden
447
+ dtype: bfloat16
448
+ experts:
449
+ - source_model: DopeorNope/SOLARC-M-10.7B
450
+ positive_prompts: [""]
451
+ - source_model: maywell/PiVoT-10.7B-Mistral-v0.2-RP
452
+ positive_prompts: [""]
453
+ - source_model: kyujinpy/Sakura-SOLAR-Instruct
454
+ positive_prompts: [""]
455
+ - source_model: jeonsworld/CarbonVillain-en-10.7B-v1
456
+ positive_prompts: [""]
457
+ ```
458
+
459
+ ## 💻 Usage
460
+
461
+ ```
462
+ python
463
+ !pip install -qU transformers bitsandbytes accelerate
464
+
465
+ from transformers import AutoTokenizer
466
+ import transformers
467
+ import torch
468
+
469
+ model = "Steelskull/Lumosia-MoE-4x10.7"
470
+
471
+ tokenizer = AutoTokenizer.from_pretrained(model)
472
+ pipeline = transformers.pipeline(
473
+ "text-generation",
474
+ model=model,
475
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
476
+ )
477
+
478
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
479
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
480
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
481
+ print(outputs[0]["generated_text"])
482
+ ```
483
+
484
+ <!-- original-model-card end -->