TheBloke commited on
Commit
6f8c898
1 Parent(s): 0c117bd

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +636 -0
README.md ADDED
@@ -0,0 +1,636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: fblgit/LUNA-SOLARkrautLM-Instruct
3
+ datasets:
4
+ - argilla/distilabel-math-preference-dpo
5
+ inference: false
6
+ language:
7
+ - en
8
+ - de
9
+ library_name: transformers
10
+ license: cc-by-nc-4.0
11
+ model_creator: FBL
12
+ model_name: Luna SOLARkrautLM Instruct
13
+ model_type: solar
14
+ pipeline_tag: text-generation
15
+ prompt_template: '<|im_start|>system
16
+
17
+ {system_message}<|im_end|>
18
+
19
+ <|im_start|>user
20
+
21
+ {prompt}<|im_end|>
22
+
23
+ <|im_start|>assistant
24
+
25
+ '
26
+ quantized_by: TheBloke
27
+ tags:
28
+ - finetune
29
+ - dpo
30
+ - Instruct
31
+ - augmentation
32
+ - german
33
+ ---
34
+ <!-- markdownlint-disable MD041 -->
35
+
36
+ <!-- header start -->
37
+ <!-- 200823 -->
38
+ <div style="width: auto; margin-left: auto; margin-right: auto">
39
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
40
+ </div>
41
+ <div style="display: flex; justify-content: space-between; width: 100%;">
42
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
44
+ </div>
45
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
46
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
47
+ </div>
48
+ </div>
49
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
50
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
51
+ <!-- header end -->
52
+
53
+ # Luna SOLARkrautLM Instruct - AWQ
54
+ - Model creator: [FBL](https://huggingface.co/fblgit)
55
+ - Original model: [Luna SOLARkrautLM Instruct](https://huggingface.co/fblgit/LUNA-SOLARkrautLM-Instruct)
56
+
57
+ <!-- description start -->
58
+ ## Description
59
+
60
+ This repo contains AWQ model files for [FBL's Luna SOLARkrautLM Instruct](https://huggingface.co/fblgit/LUNA-SOLARkrautLM-Instruct).
61
+
62
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
63
+
64
+
65
+ ### About AWQ
66
+
67
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
68
+
69
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
70
+
71
+ It is supported by:
72
+
73
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
74
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
75
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
76
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
77
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
78
+
79
+ <!-- description end -->
80
+ <!-- repositories-available start -->
81
+ ## Repositories available
82
+
83
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ)
84
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ)
85
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GGUF)
86
+ * [FBL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/fblgit/LUNA-SOLARkrautLM-Instruct)
87
+ <!-- repositories-available end -->
88
+
89
+ <!-- prompt-template start -->
90
+ ## Prompt template: ChatML
91
+
92
+ ```
93
+ <|im_start|>system
94
+ {system_message}<|im_end|>
95
+ <|im_start|>user
96
+ {prompt}<|im_end|>
97
+ <|im_start|>assistant
98
+
99
+ ```
100
+
101
+ <!-- prompt-template end -->
102
+
103
+
104
+ <!-- README_AWQ.md-provided-files start -->
105
+ ## Provided files, and AWQ parameters
106
+
107
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
108
+
109
+ Models are released as sharded safetensors files.
110
+
111
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
112
+ | ------ | ---- | -- | ----------- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ/tree/main) | 4 | 128 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 5.96 GB
114
+
115
+ <!-- README_AWQ.md-provided-files end -->
116
+
117
+ <!-- README_AWQ.md-text-generation-webui start -->
118
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
119
+
120
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
121
+
122
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
123
+
124
+ 1. Click the **Model tab**.
125
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ`.
126
+ 3. Click **Download**.
127
+ 4. The model will start downloading. Once it's finished it will say "Done".
128
+ 5. In the top left, click the refresh icon next to **Model**.
129
+ 6. In the **Model** dropdown, choose the model you just downloaded: `LUNA-SOLARkrautLM-Instruct-AWQ`
130
+ 7. Select **Loader: AutoAWQ**.
131
+ 8. Click Load, and the model will load and is now ready for use.
132
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
133
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
134
+ <!-- README_AWQ.md-text-generation-webui end -->
135
+
136
+ <!-- README_AWQ.md-use-from-vllm start -->
137
+ ## Multi-user inference server: vLLM
138
+
139
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
140
+
141
+ - Please ensure you are using vLLM version 0.2 or later.
142
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
143
+
144
+ For example:
145
+
146
+ ```shell
147
+ python3 -m vllm.entrypoints.api_server --model TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ --quantization awq --dtype auto
148
+ ```
149
+
150
+ - When using vLLM from Python code, again set `quantization=awq`.
151
+
152
+ For example:
153
+
154
+ ```python
155
+ from vllm import LLM, SamplingParams
156
+
157
+ prompts = [
158
+ "Tell me about AI",
159
+ "Write a story about llamas",
160
+ "What is 291 - 150?",
161
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
162
+ ]
163
+ prompt_template=f'''<|im_start|>system
164
+ {system_message}<|im_end|>
165
+ <|im_start|>user
166
+ {prompt}<|im_end|>
167
+ <|im_start|>assistant
168
+ '''
169
+
170
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
171
+
172
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
173
+
174
+ llm = LLM(model="TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ", quantization="awq", dtype="auto")
175
+
176
+ outputs = llm.generate(prompts, sampling_params)
177
+
178
+ # Print the outputs.
179
+ for output in outputs:
180
+ prompt = output.prompt
181
+ generated_text = output.outputs[0].text
182
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
183
+ ```
184
+ <!-- README_AWQ.md-use-from-vllm start -->
185
+
186
+ <!-- README_AWQ.md-use-from-tgi start -->
187
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
188
+
189
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
190
+
191
+ Example Docker parameters:
192
+
193
+ ```shell
194
+ --model-id TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
195
+ ```
196
+
197
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
198
+
199
+ ```shell
200
+ pip3 install huggingface-hub
201
+ ```
202
+
203
+ ```python
204
+ from huggingface_hub import InferenceClient
205
+
206
+ endpoint_url = "https://your-endpoint-url-here"
207
+
208
+ prompt = "Tell me about AI"
209
+ prompt_template=f'''<|im_start|>system
210
+ {system_message}<|im_end|>
211
+ <|im_start|>user
212
+ {prompt}<|im_end|>
213
+ <|im_start|>assistant
214
+ '''
215
+
216
+ client = InferenceClient(endpoint_url)
217
+ response = client.text_generation(prompt,
218
+ max_new_tokens=128,
219
+ do_sample=True,
220
+ temperature=0.7,
221
+ top_p=0.95,
222
+ top_k=40,
223
+ repetition_penalty=1.1)
224
+
225
+ print(f"Model output: ", response)
226
+ ```
227
+ <!-- README_AWQ.md-use-from-tgi end -->
228
+
229
+ <!-- README_AWQ.md-use-from-python start -->
230
+ ## Inference from Python code using Transformers
231
+
232
+ ### Install the necessary packages
233
+
234
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
235
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
236
+
237
+ ```shell
238
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
239
+ ```
240
+
241
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
242
+
243
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
244
+
245
+ ```shell
246
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
247
+ ```
248
+
249
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
250
+
251
+ ```shell
252
+ pip3 uninstall -y autoawq
253
+ git clone https://github.com/casper-hansen/AutoAWQ
254
+ cd AutoAWQ
255
+ pip3 install .
256
+ ```
257
+
258
+ ### Transformers example code (requires Transformers 4.35.0 and later)
259
+
260
+ ```python
261
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
262
+
263
+ model_name_or_path = "TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ"
264
+
265
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
266
+ model = AutoModelForCausalLM.from_pretrained(
267
+ model_name_or_path,
268
+ low_cpu_mem_usage=True,
269
+ device_map="cuda:0"
270
+ )
271
+
272
+ # Using the text streamer to stream output one token at a time
273
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
274
+
275
+ prompt = "Tell me about AI"
276
+ prompt_template=f'''<|im_start|>system
277
+ {system_message}<|im_end|>
278
+ <|im_start|>user
279
+ {prompt}<|im_end|>
280
+ <|im_start|>assistant
281
+ '''
282
+
283
+ # Convert prompt to tokens
284
+ tokens = tokenizer(
285
+ prompt_template,
286
+ return_tensors='pt'
287
+ ).input_ids.cuda()
288
+
289
+ generation_params = {
290
+ "do_sample": True,
291
+ "temperature": 0.7,
292
+ "top_p": 0.95,
293
+ "top_k": 40,
294
+ "max_new_tokens": 512,
295
+ "repetition_penalty": 1.1
296
+ }
297
+
298
+ # Generate streamed output, visible one token at a time
299
+ generation_output = model.generate(
300
+ tokens,
301
+ streamer=streamer,
302
+ **generation_params
303
+ )
304
+
305
+ # Generation without a streamer, which will include the prompt in the output
306
+ generation_output = model.generate(
307
+ tokens,
308
+ **generation_params
309
+ )
310
+
311
+ # Get the tokens from the output, decode them, print them
312
+ token_output = generation_output[0]
313
+ text_output = tokenizer.decode(token_output)
314
+ print("model.generate output: ", text_output)
315
+
316
+ # Inference is also possible via Transformers' pipeline
317
+ from transformers import pipeline
318
+
319
+ pipe = pipeline(
320
+ "text-generation",
321
+ model=model,
322
+ tokenizer=tokenizer,
323
+ **generation_params
324
+ )
325
+
326
+ pipe_output = pipe(prompt_template)[0]['generated_text']
327
+ print("pipeline output: ", pipe_output)
328
+
329
+ ```
330
+ <!-- README_AWQ.md-use-from-python end -->
331
+
332
+ <!-- README_AWQ.md-compatibility start -->
333
+ ## Compatibility
334
+
335
+ The files provided are tested to work with:
336
+
337
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
338
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
339
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
340
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
341
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
342
+
343
+ <!-- README_AWQ.md-compatibility end -->
344
+
345
+ <!-- footer start -->
346
+ <!-- 200823 -->
347
+ ## Discord
348
+
349
+ For further support, and discussions on these models and AI in general, join us at:
350
+
351
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
352
+
353
+ ## Thanks, and how to contribute
354
+
355
+ Thanks to the [chirper.ai](https://chirper.ai) team!
356
+
357
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
358
+
359
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
360
+
361
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
362
+
363
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
364
+
365
+ * Patreon: https://patreon.com/TheBlokeAI
366
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
367
+
368
+ **Special thanks to**: Aemon Algiz.
369
+
370
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
371
+
372
+
373
+ Thank you to all my generous patrons and donaters!
374
+
375
+ And thank you again to a16z for their generous grant.
376
+
377
+ <!-- footer end -->
378
+
379
+ # Original model card: FBL's Luna SOLARkrautLM Instruct
380
+
381
+
382
+ ![Juanako.AI & SauerkrautLM Productions](https://vago-solutions.de/wp-content/uploads/2023/12/sauerkrautlm-solar.png "LUNA-SOLARkrautLM-Instruct")
383
+ ## VAGO solutions LUNA-SOLARkrautLM-Instruct
384
+ Introducing **LUNA-SOLARkrautLM-Instruct** – a UNA-Sauerkraut version of the powerful [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) !
385
+ Aligned with **DPO** and tamed with **UNA**.
386
+
387
+ # Table of Contents
388
+ 1. [Overview of all LUNA-SOLARkrautLM-Instruct models](#all-sauerkrautlm-solar-instruct-models)
389
+ 2. [Model Details](#model-details)
390
+ - [Prompt template](#prompt-template)
391
+ - [Training Dataset](#training-dataset)
392
+ - [Data Contamination Test](#data-contamination-test-results)
393
+ 3. [Evaluation](#evaluation)
394
+ 5. [Disclaimer](#disclaimer)
395
+ 6. [Contact](#contact)
396
+ 7. [Collaborations](#collaborations)
397
+ 8. [Acknowledgement](#acknowledgement)
398
+
399
+
400
+ ## Model Details
401
+ **LUNA-SOLARkrautLM-Instruct**
402
+ - **Model Type:** LUNA-SOLARkrautLM-Instruct is a UNA Model based on [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) and the powerful set of [SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct/)
403
+ - **Language(s):** English, German
404
+ - **License:** cc-by-nc-4.0
405
+ - **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:[email protected]) [Juanako.AI - UNA](mailto:[email protected])
406
+
407
+ ### Training Dataset:
408
+
409
+ LUNA-SOLARkrautLM-Instruct was trained with mix of German data augmentation and translated data.
410
+ Aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset
411
+ as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).**
412
+ We found, that only a simple translation of training data can lead to unnatural German phrasings.
413
+ Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.
414
+
415
+ We improved the German language skills on this model. Nevertheless, certain formulations may occur that are not entirely correct.
416
+
417
+
418
+ ### Data Contamination Test Results
419
+
420
+ Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in.
421
+ We checked our SauerkrautLM-DPO dataset with a special test [1] on this model as target model and upstage/SOLAR-10.7B-Instruct-v1.0 as reference model.
422
+ The HuggingFace team used the same methods [2, 3].
423
+
424
+ Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination.
425
+
426
+ *The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.*
427
+
428
+ | Dataset | ARC | MMLU | TruthfulQA | GSM8K |
429
+ |------------------------------|-------|-------|-------|-------|
430
+ | **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 |
431
+
432
+ [1] https://github.com/swj0419/detect-pretrain-code-contamination
433
+
434
+ [2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06
435
+
436
+ [3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230
437
+
438
+ ### Prompt Template:
439
+ ```
440
+ <|im_start|>system
441
+ Du bist LUNA-SOLARkrautLM, ein großes Sprachmodell, das höflich und kompetent antwortet.<|im_end|>
442
+ <|im_start|>user
443
+ Wie geht es dir?<|im_end|>
444
+ <|im_start|>assistant
445
+
446
+ ```
447
+
448
+ ```
449
+ ### User:
450
+ Hello, how are you?
451
+
452
+ ### Assistant:
453
+ Hi there! I am an AI language model, so I don't have personal feelings or emotions in the traditional sense. However, I can assure you that my systems and processes are functioning well at this moment, allowing me to provide helpful responses for your queries.
454
+ How may I assist you today?
455
+
456
+ ```
457
+
458
+ ## Evaluation
459
+ ```
460
+
461
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto
462
+ |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
463
+ |-----|-------|----------|-----:|-----------|-----:|---|-----:|
464
+ |gsm8k|Yaml |get-answer| 5|exact_match|0.6467|± |0.0132|
465
+
466
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
467
+ | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
468
+ |--------------|-------|------|-----:|------|-----:|---|-----:|
469
+ |truthfulqa_mc2|Yaml |none | 0|acc |0.7368|± |0.0149|
470
+
471
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 25, batch_size: auto (32)
472
+ | Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|
473
+ |-------------|-------|------|-----:|--------|----:|---|-----:|
474
+ |arc_challenge|Yaml |none | 25|acc |0.692|± |0.0135|
475
+ | | |none | 25|acc_norm|0.715|± |0.0132|
476
+
477
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
478
+ | Tasks |Version|Filter|n-shot|Metric| Value | |Stderr|
479
+ |-----------|-------|------|-----:|------|------:|---|-----:|
480
+ |paws_de |Yaml |none | 0|acc | 0.3965|± |0.0109|
481
+ |wmt16-en-de|Yaml |none | 0|bleu | 3.5784|± |0.1325|
482
+ | | |none | 0|ter |64.5707|± |0.4514|
483
+ | | |none | 0|chrf |45.7068|± |0.3861|
484
+ |xnli_de |Yaml |none | 0|acc | 0.4129|± |0.0099|
485
+
486
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 10, batch_size: auto (32)
487
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
488
+ |---------|-------|------|-----:|--------|-----:|---|-----:|
489
+ |hellaswag|Yaml |none | 10|acc |0.7131|± |0.0045|
490
+ | | |none | 10|acc_norm|0.8815|± |0.0032|
491
+
492
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (64)
493
+ | Tasks |Version|Filter|n-shot|Metric| Value | |Stderr|
494
+ |-----------|-------|------|-----:|------|------:|---|-----:|
495
+ |wmt16-de-en|Yaml |none | 5|bleu |14.9310|± |0.8014|
496
+ | | |none | 5|ter |46.3206|± |0.4087|
497
+ | | |none | 5|chrf |60.8637|± |0.4436|
498
+ |wmt16-en-de|Yaml |none | 5|bleu | 6.2016|± |0.2918|
499
+ | | |none | 5|ter |63.9997|± |0.4591|
500
+ | | |none | 5|chrf |51.1399|± |0.3978|
501
+ |xnli_de |Yaml |none | 5|acc | 0.4703|± |0.0100|
502
+
503
+ hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (16)
504
+ | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
505
+ |---------------------------------------|-------|------|-----:|------|-----:|---|-----:|
506
+ |mmlu |N/A |none | 0|acc |0.6461|± |0.1215|
507
+ | - humanities |N/A |none | 5|acc |0.5960|± |0.1200|
508
+ | - formal_logic |Yaml |none | 5|acc |0.4683|± |0.0446|
509
+ | - high_school_european_history |Yaml |none | 5|acc |0.8121|± |0.0305|
510
+ | - high_school_us_history |Yaml |none | 5|acc |0.8480|± |0.0252|
511
+ | - high_school_world_history |Yaml |none | 5|acc |0.8312|± |0.0244|
512
+ | - international_law |Yaml |none | 5|acc |0.7851|± |0.0375|
513
+ | - jurisprudence |Yaml |none | 5|acc |0.7685|± |0.0408|
514
+ | - logical_fallacies |Yaml |none | 5|acc |0.7423|± |0.0344|
515
+ | - moral_disputes |Yaml |none | 5|acc |0.7283|± |0.0239|
516
+ | - moral_scenarios |Yaml |none | 5|acc |0.3899|± |0.0163|
517
+ | - philosophy |Yaml |none | 5|acc |0.7074|± |0.0258|
518
+ | - prehistory |Yaml |none | 5|acc |0.7716|± |0.0234|
519
+ | - professional_law |Yaml |none | 5|acc |0.4824|± |0.0128|
520
+ | - world_religions |Yaml |none | 5|acc |0.7661|± |0.0325|
521
+ | - other |N/A |none | 5|acc |0.7097|± |0.0900|
522
+ | - business_ethics |Yaml |none | 5|acc |0.7700|± |0.0423|
523
+ | - clinical_knowledge |Yaml |none | 5|acc |0.6792|± |0.0287|
524
+ | - college_medicine |Yaml |none | 5|acc |0.6647|± |0.0360|
525
+ | - global_facts |Yaml |none | 5|acc |0.3600|± |0.0482|
526
+ | - human_aging |Yaml |none | 5|acc |0.6861|± |0.0311|
527
+ | - management |Yaml |none | 5|acc |0.8350|± |0.0368|
528
+ | - marketing |Yaml |none | 5|acc |0.8504|± |0.0234|
529
+ | - medical_genetics |Yaml |none | 5|acc |0.6700|± |0.0473|
530
+ | - miscellaneous |Yaml |none | 5|acc |0.7893|± |0.0146|
531
+ | - nutrition |Yaml |none | 5|acc |0.7549|± |0.0246|
532
+ | - professional_accounting |Yaml |none | 5|acc |0.5213|± |0.0298|
533
+ | - professional_medicine |Yaml |none | 5|acc |0.7353|± |0.0268|
534
+ | - virology |Yaml |none | 5|acc |0.5783|± |0.0384|
535
+ | - social_sciences |N/A |none | 5|acc |0.7501|± |0.0684|
536
+ | - econometrics |Yaml |none | 5|acc |0.5175|± |0.0470|
537
+ | - high_school_geography |Yaml |none | 5|acc |0.8485|± |0.0255|
538
+ | - high_school_government_and_politics|Yaml |none | 5|acc |0.8912|± |0.0225|
539
+ | - high_school_macroeconomics |Yaml |none | 5|acc |0.6615|± |0.0240|
540
+ | - high_school_microeconomics |Yaml |none | 5|acc |0.7311|± |0.0288|
541
+ | - high_school_psychology |Yaml |none | 5|acc |0.8385|± |0.0158|
542
+ | - human_sexuality |Yaml |none | 5|acc |0.7023|± |0.0401|
543
+ | - professional_psychology |Yaml |none | 5|acc |0.6683|± |0.0190|
544
+ | - public_relations |Yaml |none | 5|acc |0.6909|± |0.0443|
545
+ | - security_studies |Yaml |none | 5|acc |0.7633|± |0.0272|
546
+ | - sociology |Yaml |none | 5|acc |0.8358|± |0.0262|
547
+ | - us_foreign_policy |Yaml |none | 5|acc |0.8800|± |0.0327|
548
+ | - stem |N/A |none | 5|acc |0.5569|± |0.1360|
549
+ | - abstract_algebra |Yaml |none | 5|acc |0.3800|± |0.0488|
550
+ | - anatomy |Yaml |none | 5|acc |0.6148|± |0.0420|
551
+ | - astronomy |Yaml |none | 5|acc |0.7237|± |0.0364|
552
+ | - college_biology |Yaml |none | 5|acc |0.7708|± |0.0351|
553
+ | - college_chemistry |Yaml |none | 5|acc |0.4600|± |0.0501|
554
+ | - college_computer_science |Yaml |none | 5|acc |0.5400|± |0.0501|
555
+ | - college_mathematics |Yaml |none | 5|acc |0.2700|± |0.0446|
556
+ | - college_physics |Yaml |none | 5|acc |0.3333|± |0.0469|
557
+ | - computer_security |Yaml |none | 5|acc |0.7300|± |0.0446|
558
+ | - conceptual_physics |Yaml |none | 5|acc |0.6213|± |0.0317|
559
+ | - electrical_engineering |Yaml |none | 5|acc |0.6276|± |0.0403|
560
+ | - elementary_mathematics |Yaml |none | 5|acc |0.4788|± |0.0257|
561
+ | - high_school_biology |Yaml |none | 5|acc |0.8065|± |0.0225|
562
+ | - high_school_chemistry |Yaml |none | 5|acc |0.5123|± |0.0352|
563
+ | - high_school_computer_science |Yaml |none | 5|acc |0.7000|± |0.0461|
564
+ | - high_school_mathematics |Yaml |none | 5|acc |0.3889|± |0.0297|
565
+ | - high_school_physics |Yaml |none | 5|acc |0.3576|± |0.0391|
566
+ | - high_school_statistics |Yaml |none | 5|acc |0.5926|± |0.0335|
567
+ | - machine_learning |Yaml |none | 5|acc |0.4554|± |0.0473|
568
+
569
+ | Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
570
+ |------------------|-------|------|-----:|------|-----:|---|-----:|
571
+ |mmlu |N/A |none | 0|acc |0.6461|± |0.1215|
572
+ | - humanities |N/A |none | 5|acc |0.5960|± |0.1200|
573
+ | - other |N/A |none | 5|acc |0.7097|± |0.0900|
574
+ | - social_sciences|N/A |none | 5|acc |0.7501|± |0.0684|
575
+ | - stem |N/A |none | 5|acc |0.5569|± |0.1360|
576
+ ```
577
+ ### MT-Bench
578
+ ```
579
+ ########## Average ##########
580
+ score
581
+ model
582
+ gpt-4 8.990625
583
+ gpt-3.5-turbo 7.943750
584
+ claude-instant-v1 7.905660
585
+ claude-v1 7.900000
586
+ UNA-SOLAR-10.7B-Instruct-v1.0 7.521875
587
+ LUNA-SOLARkrautLM-Instruct 7.462500
588
+ vicuna-33b-v1.3 7.121875
589
+ wizardlm-30b 7.009375
590
+ Llama-2-70b-chat 6.856250
591
+ Llama-2-13b-chat 6.650000
592
+ guanaco-33b 6.528125
593
+ tulu-30b 6.434375
594
+ guanaco-65b 6.409375
595
+ oasst-sft-7-llama-30b 6.409375
596
+ palm-2-chat-bison-001 6.400000
597
+ mpt-30b-chat 6.393750
598
+ vicuna-13b-v1.3 6.387500
599
+ wizardlm-13b 6.353125
600
+ Llama-2-7b-chat 6.268750
601
+ vicuna-7b-v1.3 5.996875
602
+ baize-v2-13b 5.750000
603
+ nous-hermes-13b 5.553459
604
+ mpt-7b-chat 5.459119
605
+ gpt4all-13b-snoozy 5.452830
606
+ koala-13b 5.350000
607
+ mpt-30b-instruct 5.218750
608
+ falcon-40b-instruct 5.168750
609
+ h2ogpt-oasst-open-llama-13b 4.625000
610
+ alpaca-13b 4.531250
611
+ chatglm-6b 4.500000
612
+ oasst-sft-4-pythia-12b 4.318750
613
+ rwkv-4-raven-14b 3.984375
614
+ dolly-v2-12b 3.275000
615
+ fastchat-t5-3b 3.040625
616
+ stablelm-tuned-alpha-7b 2.753125
617
+ llama-13b 2.606250
618
+ ```
619
+
620
+ ## Disclaimer
621
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
622
+ However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
623
+ Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
624
+  
625
+ ## Contact
626
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:[email protected]). We are also grateful for your feedback and suggestions.
627
+  
628
+ ## Collaborations
629
+ We are also keenly seeking support and investment for our startup, [VAGO Solutions](https://huggingface.co/VAGOsolutions), where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.
630
+
631
+ [Juanako.AI](https://huggingface.co/fblgit) is also seeking support and investment for our startup, we also are open for collaborating with other labs to make awesome models like this one.
632
+
633
+ ## Acknowledgement
634
+ Big Hug to [VAGO Solutions](https://huggingface.co/VAGOsolutions), we merely used our UNA transformers library on their code and dataset, nothing else. This won't be possible without them, thanks!
635
+
636
+ Many thanks to [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to [upstage](https://huggingface.co/upstage) for providing the open source community with their latest technology!