TheBloke commited on
Commit
bd28445
·
1 Parent(s): 2431d12

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +534 -0
README.md ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mlabonne/Beyonder-4x7B-v2
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Maxime Labonne
6
+ model_name: Beyonder 4X7B v2
7
+ model_type: mixtral
8
+ prompt_template: '<|im_start|>system
9
+
10
+ {system_message}<|im_end|>
11
+
12
+ <|im_start|>user
13
+
14
+ {prompt}<|im_end|>
15
+
16
+ <|im_start|>assistant
17
+
18
+ '
19
+ quantized_by: TheBloke
20
+ tags:
21
+ - moe
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Beyonder 4X7B v2 - AWQ
43
+ - Model creator: [Maxime Labonne](https://huggingface.co/mlabonne)
44
+ - Original model: [Beyonder 4X7B v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains AWQ model files for [Maxime Labonne's Beyonder 4X7B v2](https://huggingface.co/mlabonne/Beyonder-4x7B-v2).
50
+
51
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
52
+
53
+
54
+ **MIXTRAL AWQ**
55
+
56
+ This is a Mixtral AWQ model.
57
+
58
+ For AutoAWQ inference, please install AutoAWQ 0.1.8 or later.
59
+
60
+ Support via Transformers is also available, but currently requires installing Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers.git`
61
+
62
+ vLLM: version 0.2.6 is confirmed to support Mixtral AWQs.
63
+
64
+ TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!)
65
+
66
+ ### About AWQ
67
+
68
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
69
+
70
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
71
+
72
+ AWQ models are supported by (note that not all of these may support Mixtral models yet - see above):
73
+
74
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
75
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
76
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
77
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
78
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
79
+
80
+ <!-- description end -->
81
+ <!-- repositories-available start -->
82
+ ## Repositories available
83
+
84
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Beyonder-4x7B-v2-AWQ)
85
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Beyonder-4x7B-v2-GPTQ)
86
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Beyonder-4x7B-v2-GGUF)
87
+ * [Maxime Labonne's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mlabonne/Beyonder-4x7B-v2)
88
+ <!-- repositories-available end -->
89
+
90
+ <!-- prompt-template start -->
91
+ ## Prompt template: ChatML
92
+
93
+ ```
94
+ <|im_start|>system
95
+ {system_message}<|im_end|>
96
+ <|im_start|>user
97
+ {prompt}<|im_end|>
98
+ <|im_start|>assistant
99
+
100
+ ```
101
+
102
+ <!-- prompt-template end -->
103
+
104
+
105
+ <!-- README_AWQ.md-provided-files start -->
106
+ ## Provided files, and AWQ parameters
107
+
108
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
109
+
110
+ Models are released as sharded safetensors files.
111
+
112
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
113
+ | ------ | ---- | -- | ----------- | ------- | ---- |
114
+ | [main](https://huggingface.co/TheBloke/Beyonder-4x7B-v2-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 12.94 GB
115
+
116
+ <!-- README_AWQ.md-provided-files end -->
117
+
118
+ <!-- README_AWQ.md-text-generation-webui start -->
119
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
120
+
121
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
122
+
123
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
124
+
125
+ 1. Click the **Model tab**.
126
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Beyonder-4x7B-v2-AWQ`.
127
+ 3. Click **Download**.
128
+ 4. The model will start downloading. Once it's finished it will say "Done".
129
+ 5. In the top left, click the refresh icon next to **Model**.
130
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Beyonder-4x7B-v2-AWQ`
131
+ 7. Select **Loader: AutoAWQ**.
132
+ 8. Click Load, and the model will load and is now ready for use.
133
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
134
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
135
+ <!-- README_AWQ.md-text-generation-webui end -->
136
+
137
+ <!-- README_AWQ.md-use-from-vllm start -->
138
+ ## Multi-user inference server: vLLM
139
+
140
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
141
+
142
+ - Please ensure you are using vLLM version 0.2 or later.
143
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
144
+
145
+ For example:
146
+
147
+ ```shell
148
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Beyonder-4x7B-v2-AWQ --quantization awq --dtype auto
149
+ ```
150
+
151
+ - When using vLLM from Python code, again set `quantization=awq`.
152
+
153
+ For example:
154
+
155
+ ```python
156
+ from vllm import LLM, SamplingParams
157
+
158
+ prompts = [
159
+ "Tell me about AI",
160
+ "Write a story about llamas",
161
+ "What is 291 - 150?",
162
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
163
+ ]
164
+ prompt_template=f'''<|im_start|>system
165
+ {system_message}<|im_end|>
166
+ <|im_start|>user
167
+ {prompt}<|im_end|>
168
+ <|im_start|>assistant
169
+ '''
170
+
171
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
172
+
173
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
174
+
175
+ llm = LLM(model="TheBloke/Beyonder-4x7B-v2-AWQ", quantization="awq", dtype="auto")
176
+
177
+ outputs = llm.generate(prompts, sampling_params)
178
+
179
+ # Print the outputs.
180
+ for output in outputs:
181
+ prompt = output.prompt
182
+ generated_text = output.outputs[0].text
183
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
184
+ ```
185
+ <!-- README_AWQ.md-use-from-vllm start -->
186
+
187
+ <!-- README_AWQ.md-use-from-tgi start -->
188
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
189
+
190
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
191
+
192
+ Example Docker parameters:
193
+
194
+ ```shell
195
+ --model-id TheBloke/Beyonder-4x7B-v2-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
196
+ ```
197
+
198
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
199
+
200
+ ```shell
201
+ pip3 install huggingface-hub
202
+ ```
203
+
204
+ ```python
205
+ from huggingface_hub import InferenceClient
206
+
207
+ endpoint_url = "https://your-endpoint-url-here"
208
+
209
+ prompt = "Tell me about AI"
210
+ prompt_template=f'''<|im_start|>system
211
+ {system_message}<|im_end|>
212
+ <|im_start|>user
213
+ {prompt}<|im_end|>
214
+ <|im_start|>assistant
215
+ '''
216
+
217
+ client = InferenceClient(endpoint_url)
218
+ response = client.text_generation(prompt,
219
+ max_new_tokens=128,
220
+ do_sample=True,
221
+ temperature=0.7,
222
+ top_p=0.95,
223
+ top_k=40,
224
+ repetition_penalty=1.1)
225
+
226
+ print(f"Model output: ", response)
227
+ ```
228
+ <!-- README_AWQ.md-use-from-tgi end -->
229
+
230
+ <!-- README_AWQ.md-use-from-python start -->
231
+ ## Inference from Python code using Transformers
232
+
233
+ ### Install the necessary packages
234
+
235
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
236
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
237
+
238
+ ```shell
239
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
240
+ ```
241
+
242
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
243
+
244
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
245
+
246
+ ```shell
247
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
248
+ ```
249
+
250
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
251
+
252
+ ```shell
253
+ pip3 uninstall -y autoawq
254
+ git clone https://github.com/casper-hansen/AutoAWQ
255
+ cd AutoAWQ
256
+ pip3 install .
257
+ ```
258
+
259
+ ### Transformers example code (requires Transformers 4.35.0 and later)
260
+
261
+ ```python
262
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
263
+
264
+ model_name_or_path = "TheBloke/Beyonder-4x7B-v2-AWQ"
265
+
266
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
267
+ model = AutoModelForCausalLM.from_pretrained(
268
+ model_name_or_path,
269
+ low_cpu_mem_usage=True,
270
+ device_map="cuda:0"
271
+ )
272
+
273
+ # Using the text streamer to stream output one token at a time
274
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
275
+
276
+ prompt = "Tell me about AI"
277
+ prompt_template=f'''<|im_start|>system
278
+ {system_message}<|im_end|>
279
+ <|im_start|>user
280
+ {prompt}<|im_end|>
281
+ <|im_start|>assistant
282
+ '''
283
+
284
+ # Convert prompt to tokens
285
+ tokens = tokenizer(
286
+ prompt_template,
287
+ return_tensors='pt'
288
+ ).input_ids.cuda()
289
+
290
+ generation_params = {
291
+ "do_sample": True,
292
+ "temperature": 0.7,
293
+ "top_p": 0.95,
294
+ "top_k": 40,
295
+ "max_new_tokens": 512,
296
+ "repetition_penalty": 1.1
297
+ }
298
+
299
+ # Generate streamed output, visible one token at a time
300
+ generation_output = model.generate(
301
+ tokens,
302
+ streamer=streamer,
303
+ **generation_params
304
+ )
305
+
306
+ # Generation without a streamer, which will include the prompt in the output
307
+ generation_output = model.generate(
308
+ tokens,
309
+ **generation_params
310
+ )
311
+
312
+ # Get the tokens from the output, decode them, print them
313
+ token_output = generation_output[0]
314
+ text_output = tokenizer.decode(token_output)
315
+ print("model.generate output: ", text_output)
316
+
317
+ # Inference is also possible via Transformers' pipeline
318
+ from transformers import pipeline
319
+
320
+ pipe = pipeline(
321
+ "text-generation",
322
+ model=model,
323
+ tokenizer=tokenizer,
324
+ **generation_params
325
+ )
326
+
327
+ pipe_output = pipe(prompt_template)[0]['generated_text']
328
+ print("pipeline output: ", pipe_output)
329
+
330
+ ```
331
+ <!-- README_AWQ.md-use-from-python end -->
332
+
333
+ <!-- README_AWQ.md-compatibility start -->
334
+ ## Compatibility
335
+
336
+ The files provided are tested to work with:
337
+
338
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
339
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
340
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
341
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
342
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
343
+
344
+ <!-- README_AWQ.md-compatibility end -->
345
+
346
+ <!-- footer start -->
347
+ <!-- 200823 -->
348
+ ## Discord
349
+
350
+ For further support, and discussions on these models and AI in general, join us at:
351
+
352
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
353
+
354
+ ## Thanks, and how to contribute
355
+
356
+ Thanks to the [chirper.ai](https://chirper.ai) team!
357
+
358
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
359
+
360
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
361
+
362
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
363
+
364
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
365
+
366
+ * Patreon: https://patreon.com/TheBlokeAI
367
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
368
+
369
+ **Special thanks to**: Aemon Algiz.
370
+
371
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
372
+
373
+
374
+ Thank you to all my generous patrons and donaters!
375
+
376
+ And thank you again to a16z for their generous grant.
377
+
378
+ <!-- footer end -->
379
+
380
+ # Original model card: Maxime Labonne's Beyonder 4X7B v2
381
+
382
+
383
+ ![](https://i.imgur.com/vq1QHEA.jpg)
384
+
385
+ # Beyonder-4x7B-v2
386
+
387
+ This model is a Mixture of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models:
388
+ * [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210)
389
+ * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
390
+ * [maywell/PiVoT-0.1-Starling-LM-RP](https://huggingface.co/maywell/PiVoT-0.1-Starling-LM-RP)
391
+ * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1)
392
+
393
+ ## 🏆 Evaluation
394
+
395
+ Beyonder-4x7B-v2 is competitive with Mixtral-8x7B-Instruct-v0.1 on the Open LLM Leaderboard, while only having 4 experts instead of 8.
396
+
397
+ ![](https://i.imgur.com/5raBff0.png)
398
+
399
+ It also displays a significant improvement over the individual experts.
400
+
401
+ ![](https://i.imgur.com/7Idwkb0.png)
402
+
403
+ It also performs very well compared to other models on Nous benchmark suite. It's almost as good as the best Yi-34B fine-tune, which is a much bigger model: 24.2B parameters + only two experts are selected during inference (so ~12B) vs. 34B param.
404
+
405
+ | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
406
+ |--------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
407
+ |[**Beyonder-4x7B-v2**](https://huggingface.co/shadowml/Beyonder-4x7B-v2)| **45.29**| **75.95**| <u>**60.86**</u>| **46.4**| **57.13**|
408
+ |[NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)| 43.67| 73.24| 55.37| 41.76| 53.51|
409
+ |[OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)| 42.75| 72.99| 52.99| 40.94| 52.42|
410
+ |[Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B)| 47.79| 74.69| 55.92| 44.84| 55.81|
411
+ |[Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B)| <u>50.27</u>| <u>76.00</u>| 60.34| <u>46.69</u>| <u>58.33</u>|
412
+
413
+ ### AGIEval
414
+ | Task |Version| Metric |Value| |Stderr|
415
+ |------------------------------|------:|--------|----:|---|-----:|
416
+ |agieval_aqua_rat | 0|acc |23.62|± | 2.67|
417
+ | | |acc_norm|23.62|± | 2.67|
418
+ |agieval_logiqa_en | 0|acc |41.47|± | 1.93|
419
+ | | |acc_norm|43.01|± | 1.94|
420
+ |agieval_lsat_ar | 0|acc |23.04|± | 2.78|
421
+ | | |acc_norm|23.48|± | 2.80|
422
+ |agieval_lsat_lr | 0|acc |51.57|± | 2.22|
423
+ | | |acc_norm|52.94|± | 2.21|
424
+ |agieval_lsat_rc | 0|acc |64.31|± | 2.93|
425
+ | | |acc_norm|64.68|± | 2.92|
426
+ |agieval_sat_en | 0|acc |79.13|± | 2.84|
427
+ | | |acc_norm|79.13|± | 2.84|
428
+ |agieval_sat_en_without_passage| 0|acc |43.20|± | 3.46|
429
+ | | |acc_norm|43.20|± | 3.46|
430
+ |agieval_sat_math | 0|acc |34.55|± | 3.21|
431
+ | | |acc_norm|32.27|± | 3.16|
432
+
433
+ ### GPT4All
434
+ | Task |Version| Metric |Value| |Stderr|
435
+ |-------------|------:|--------|----:|---|-----:|
436
+ |arc_challenge| 0|acc |61.86|± | 1.42|
437
+ | | |acc_norm|64.51|± | 1.40|
438
+ |arc_easy | 0|acc |85.06|± | 0.73|
439
+ | | |acc_norm|82.45|± | 0.78|
440
+ |boolq | 1|acc |88.35|± | 0.56|
441
+ |hellaswag | 0|acc |68.04|± | 0.47|
442
+ | | |acc_norm|85.12|± | 0.36|
443
+ |openbookqa | 0|acc |37.80|± | 2.17|
444
+ | | |acc_norm|48.60|± | 2.24|
445
+ |piqa | 0|acc |83.08|± | 0.87|
446
+ | | |acc_norm|83.95|± | 0.86|
447
+ |winogrande | 0|acc |78.69|± | 1.15|
448
+
449
+ ### TruthfulQA
450
+ | Task |Version|Metric|Value| |Stderr|
451
+ |-------------|------:|------|----:|---|-----:|
452
+ |truthfulqa_mc| 1|mc1 |44.55|± | 1.74|
453
+ | | |mc2 |60.86|± | 1.57|
454
+
455
+ ### Bigbench
456
+ | Task |Version| Metric |Value| |Stderr|
457
+ |------------------------------------------------|------:|---------------------|----:|---|-----:|
458
+ |bigbench_causal_judgement | 0|multiple_choice_grade|58.95|± | 3.58|
459
+ |bigbench_date_understanding | 0|multiple_choice_grade|66.40|± | 2.46|
460
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|48.84|± | 3.12|
461
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|22.56|± | 2.21|
462
+ | | |exact_str_match |13.37|± | 1.80|
463
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|30.40|± | 2.06|
464
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.57|± | 1.53|
465
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|52.00|± | 2.89|
466
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|44.40|± | 2.22|
467
+ |bigbench_navigate | 0|multiple_choice_grade|52.10|± | 1.58|
468
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|69.75|± | 1.03|
469
+ |bigbench_ruin_names | 0|multiple_choice_grade|55.36|± | 2.35|
470
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|23.65|± | 1.35|
471
+ |bigbench_snarks | 0|multiple_choice_grade|77.35|± | 3.12|
472
+ |bigbench_sports_understanding | 0|multiple_choice_grade|73.02|± | 1.41|
473
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|46.80|± | 1.58|
474
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.08|± | 1.17|
475
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|19.03|± | 0.94|
476
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|52.00|± | 2.89|
477
+
478
+ ## 🧩 Configuration
479
+
480
+ ```yaml
481
+ base_model: mlabonne/Marcoro14-7B-slerp
482
+ experts:
483
+ - source_model: openchat/openchat-3.5-1210
484
+ positive_prompts:
485
+ - "chat"
486
+ - "assistant"
487
+ - "tell me"
488
+ - "explain"
489
+ - source_model: beowolx/CodeNinja-1.0-OpenChat-7B
490
+ positive_prompts:
491
+ - "code"
492
+ - "python"
493
+ - "javascript"
494
+ - "programming"
495
+ - "algorithm"
496
+ - source_model: maywell/PiVoT-0.1-Starling-LM-RP
497
+ positive_prompts:
498
+ - "storywriting"
499
+ - "write"
500
+ - "scene"
501
+ - "story"
502
+ - "character"
503
+ - source_model: WizardLM/WizardMath-7B-V1.1
504
+ positive_prompts:
505
+ - "reason"
506
+ - "math"
507
+ - "mathematics"
508
+ - "solve"
509
+ - "count"
510
+ ```
511
+
512
+ ## 💻 Usage
513
+
514
+ ```python
515
+ !pip install -qU transformers bitsandbytes accelerate
516
+
517
+ from transformers import AutoTokenizer
518
+ import transformers
519
+ import torch
520
+
521
+ model = "mlabonne/Beyonder-4x7B-v2"
522
+
523
+ tokenizer = AutoTokenizer.from_pretrained(model)
524
+ pipeline = transformers.pipeline(
525
+ "text-generation",
526
+ model=model,
527
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
528
+ )
529
+
530
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
531
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
532
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
533
+ print(outputs[0]["generated_text"])
534
+ ```