--- license: mit base_model: roberta-base tags: - generated_from_keras_callback model-index: - name: Thamer/roberta-fine-tuned results: [] --- # Thamer/roberta-fine-tuned This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3386 - Train Binary Accuracy: 0.8828 - Validation Loss: 0.5065 - Validation Binary Accuracy: 0.8114 - Train Accuracy: 0.4392 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 8416, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Binary Accuracy | Validation Loss | Validation Binary Accuracy | Train Accuracy | Epoch | |:----------:|:---------------------:|:---------------:|:--------------------------:|:--------------:|:-----:| | 0.3433 | 0.8777 | 0.5065 | 0.8114 | 0.4392 | 0 | | 0.3349 | 0.8815 | 0.5065 | 0.8114 | 0.4392 | 1 | | 0.3376 | 0.8812 | 0.5065 | 0.8114 | 0.4392 | 2 | | 0.3332 | 0.8816 | 0.5065 | 0.8114 | 0.4392 | 3 | | 0.3386 | 0.8828 | 0.5065 | 0.8114 | 0.4392 | 4 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3