thuzhaowang commited on
Commit
472381d
·
verified ·
1 Parent(s): 012722f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -2,7 +2,7 @@
2
 
3
  # DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation
4
 
5
- <a href="https://thuzhaowang.github.io/projects/DI-PCG"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a>&ensp;<a href=""><img src="https://img.shields.io/badge/ArXiv-2404.07191-brightgreen"></a>&ensp;<a href="https://huggingface.co/TencentARC/DI-PCG"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange"></a>&ensp;<a href="https://huggingface.co/spaces/TencentARC/DI-PCG"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-Huggingface-orange"></a><br>
6
 
7
  **[Wang Zhao<sup>1</sup>](https://thuzhaowang.github.io), [Yan-Pei Cao<sup>2</sup>](https://yanpei.me/), [Jiale Xu<sup>1</sup>](https://bluestyle97.github.io/), [Yuejiang Dong<sup>1,3</sup>](https://scholar.google.com.hk/citations?user=0i7bPj8AAAAJ&hl=zh-CN), [Ying Shan<sup>1</sup>](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)**
8
 
@@ -84,7 +84,7 @@ If you find our work useful for your research or applications, please cite using
84
  @article{zhao2024dipcg,
85
  title={DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation},
86
  author={Zhao, Wang and Cao, Yanpei and Xu, Jiale and Dong, Yuejiang and Shan, Ying},
87
- journal={arXiv preprint },
88
  year={2024}
89
  }
90
  ```
 
2
 
3
  # DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation
4
 
5
+ <a href="https://thuzhaowang.github.io/projects/DI-PCG"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a>&ensp;<a href="http://arxiv.org/abs/2412.15200"><img src="https://img.shields.io/badge/ArXiv-2404.07191-brightgreen"></a>&ensp;<a href="https://huggingface.co/TencentARC/DI-PCG"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange"></a>&ensp;<a href="https://huggingface.co/spaces/TencentARC/DI-PCG"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-Huggingface-orange"></a><br>
6
 
7
  **[Wang Zhao<sup>1</sup>](https://thuzhaowang.github.io), [Yan-Pei Cao<sup>2</sup>](https://yanpei.me/), [Jiale Xu<sup>1</sup>](https://bluestyle97.github.io/), [Yuejiang Dong<sup>1,3</sup>](https://scholar.google.com.hk/citations?user=0i7bPj8AAAAJ&hl=zh-CN), [Ying Shan<sup>1</sup>](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)**
8
 
 
84
  @article{zhao2024dipcg,
85
  title={DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation},
86
  author={Zhao, Wang and Cao, Yanpei and Xu, Jiale and Dong, Yuejiang and Shan, Ying},
87
+ journal={arXiv preprint arxiv:2412.15200},
88
  year={2024}
89
  }
90
  ```