File size: 1,951 Bytes
f2f6080
20bf3bf
f2f6080
20bf3bf
 
 
9ed7b5b
 
 
 
 
20bf3bf
 
 
 
 
05081f0
 
9ed7b5b
f2f6080
20bf3bf
9ed7b5b
20bf3bf
6c97d88
20bf3bf
 
 
6ea7bd8
20bf3bf
9ed7b5b
20bf3bf
6ea7bd8
 
 
 
 
20bf3bf
 
 
 
 
 
 
af9f84d
34f041c
20bf3bf
 
 
34f041c
20bf3bf
6ea7bd8
05081f0
34f041c
05081f0
 
6ea7bd8
 
 
 
 
 
 
 
 
05081f0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- 'no'
datasets:
- Teklia/NorHand_v3
pipeline_tag: image-to-text
---

# PyLaia - NorHand v3

This model performs Handwritten Text Recognition in Norwegian. It was developed during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io/).

## Model description

The model has been trained using the PyLaia library on the [NorHand v3](https://zenodo.org/records/10255840) dataset.

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

| set   | lines   | horizontal lines |
|:----- | ------: | ---------------: |
| train | 224,173 |          223,971 |
| val   |  22,828 |           22,811 |
| test  |   1,573 |            1,573 |

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the NorHand v3 training set.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%)    | WER (%) | lines   |
|:------|:---------------| ----------:| -------:|----------:|
| test  | no             | 7.52       |   22.99 |     1,573 |
| test  | yes            | 6.36       |   18.11 |     1,573 |

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

## Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```