File size: 1,951 Bytes
f2f6080 20bf3bf f2f6080 20bf3bf 9ed7b5b 20bf3bf 05081f0 9ed7b5b f2f6080 20bf3bf 9ed7b5b 20bf3bf 6c97d88 20bf3bf 6ea7bd8 20bf3bf 9ed7b5b 20bf3bf 6ea7bd8 20bf3bf af9f84d 34f041c 20bf3bf 34f041c 20bf3bf 6ea7bd8 05081f0 34f041c 05081f0 6ea7bd8 05081f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- 'no'
datasets:
- Teklia/NorHand_v3
pipeline_tag: image-to-text
---
# PyLaia - NorHand v3
This model performs Handwritten Text Recognition in Norwegian. It was developed during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io/).
## Model description
The model has been trained using the PyLaia library on the [NorHand v3](https://zenodo.org/records/10255840) dataset.
Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.
| set | lines | horizontal lines |
|:----- | ------: | ---------------: |
| train | 224,173 | 223,971 |
| val | 22,828 | 22,811 |
| test | 1,573 | 1,573 |
An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the NorHand v3 training set.
## Evaluation results
The model achieves the following results:
| set | Language model | CER (%) | WER (%) | lines |
|:------|:---------------| ----------:| -------:|----------:|
| test | no | 7.52 | 22.99 | 1,573 |
| test | yes | 6.36 | 18.11 | 1,573 |
## How to use?
Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.
## Cite us!
```bibtex
@inproceedings{pylaia2024,
author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
booktitle = {Document Analysis and Recognition - ICDAR 2024},
year = {2024},
publisher = {Springer Nature Switzerland},
address = {Cham},
pages = {387--404},
isbn = {978-3-031-70549-6}
}
``` |