File size: 2,571 Bytes
71966ed
2b89df8
71966ed
2b89df8
 
 
8ecb29a
 
 
 
 
2b89df8
 
 
 
 
 
 
93eea84
71966ed
2b89df8
8ecb29a
2b89df8
 
 
 
 
d35f921
2b89df8
d35f921
2b89df8
d35f921
 
2b89df8
 
 
 
6f2b942
2b89df8
 
 
 
 
d35f921
e7dfac0
2b89df8
 
 
e7dfac0
2b89df8
d35f921
2b89df8
e7dfac0
f127784
2b89df8
d35f921
 
 
 
 
 
 
 
 
2b89df8
 
 
f127784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- 'fr'
datasets:
- Teklia/Belfort
pipeline_tag: image-to-text
---

# PyLaia - Belfort

This model performs Handwritten Text Recognition in French on historical documents.

## Model description

The model was trained using the PyLaia library on the [Belfort](https://zenodo.org/records/8041668) dataset.

Training images were resized with a fixed height of {dimension} pixels, keeping the original aspect ratio. Vertical lines are discarded.

| set | lines | 
| :----- | ------: | 
| train | 25,800  |
| val   |  3,102  |
| test  |  3,819  |

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the Belfort training set.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%)    | WER (%) | lines   |
|:------|:---------------| ----------:| -------:|----------:|
| test  | no             | 10.54      |   28.12 |     3,819 |
| test  | yes            |  9.52      |   23.73 |     3,819 |

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

## Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```

```bibtex
@inproceedings{belfort-2023,
    author = {Tarride, Solène and Faine, Tristan and Boillet, Mélodie and Mouchère, Harold and Kermorvant, Christopher},
    title = {Handwritten Text Recognition from Crowdsourced Annotations},
    year = {2023},
    isbn = {9798400708411},
    publisher = {Association for Computing Machinery},
    address = {New York, NY, USA},
    url = {https://doi.org/10.1145/3604951.3605517},
    doi = {10.1145/3604951.3605517},
    booktitle = {Proceedings of the 7th International Workshop on Historical Document Imaging and Processing},
    pages = {1–6},
    numpages = {6},
    keywords = {Crowdsourcing, Handwritten Text Recognition, Historical Documents, Neural Networks, Text Aggregation},
    series = {HIP '23}
}
```