--- license: apache-2.0 tags: - moe - merge - epfl-llm/meditron-7b - medalpaca/medalpaca-7b - chaoyi-wu/PMC_LLAMA_7B_10_epoch - microsoft/Orca-2-7b --- # Medorca-4x7b Mediquad-orca-20B is a Mixure of Experts (MoE) made with the following models: * [epfl-llm/meditron-7b](https://huggingface.co./epfl-llm/meditron-7b) * [medalpaca/medalpaca-7b](https://huggingface.co./medalpaca/medalpaca-7b) * [chaoyi-wu/PMC_LLAMA_7B_10_epoch](https://huggingface.co./chaoyi-wu/PMC_LLAMA_7B_10_epoch) * [microsoft/Orca-2-7b](https://huggingface.co./microsoft/Orca-2-7b) ## Evaluations [open_llm_leaderboard](https://huggingface.co./datasets/open-llm-leaderboard/details_Technoculture__Mediquad-orca-20B) | Benchmark | Medorca-4x7b | Orca-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | | MedMCQA | | | | | | ClosedPubMedQA | | | | | | PubMedQA | | | | | | MedQA | | | | | | MedQA4 | | | | | | MedicationQA | | | | | | MMLU Medical | | | | | | MMLU | 24.28 | 56.37 | | | | TruthfulQA | 48.42 | 52.45 | | | | GSM8K | 0 | 47.2 | | | | ARC | 29.35 | 54.1 | | | | HellaSwag | 25.72 | 76.19 | | | | Winogrande | 48.3 | 73.48 | | | ## 🧩 Configuration ```yamlbase_model: microsoft/Orca-2-7b gate_mode: hidden dtype: bfloat16 experts: - source_model: epfl-llm/meditron-7b positive_prompts: - "How does sleep affect cardiovascular health?" - "When discussing diabetes management, the key factors to consider are" - "The differential diagnosis for a headache with visual aura could include" negative_prompts: - "What are the environmental impacts of deforestation?" - "The recent advancements in artificial intelligence have led to developments in" - source_model: medalpaca/medalpaca-7b positive_prompts: - "When discussing diabetes management, the key factors to consider are" - "The differential diagnosis for a headache with visual aura could include" negative_prompts: - "Recommend a good recipe for a vegetarian lasagna." - "The fundamental concepts in economics include ideas like supply and demand, which explain" - source_model: chaoyi-wu/PMC_LLAMA_7B_10_epoch positive_prompts: - "How does sleep affect cardiovascular health?" - "When discussing diabetes management, the key factors to consider are" negative_prompts: - "Recommend a good recipe for a vegetarian lasagna." - "The recent advancements in artificial intelligence have led to developments in" - "The fundamental concepts in economics include ideas like supply and demand, which explain" - source_model: microsoft/Orca-2-7b positive_prompts: - "Here is a funny joke for you -" - "When considering the ethical implications of artificial intelligence, one must take into account" - "In strategic planning, a company must analyze its strengths and weaknesses, which involves" - "Understanding consumer behavior in marketing requires considering factors like" - "The debate on climate change solutions hinges on arguments that" negative_prompts: - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize" - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for" - "Explaining the importance of vaccination, a healthcare professional should highlight" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Mediquad-orca-20B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```