File size: 3,685 Bytes
2bf8d08
 
 
 
 
 
 
 
 
d2154a7
2bf8d08
6397347
 
 
2bf8d08
 
 
03ee38b
 
bb2b27d
 
 
 
 
 
 
 
 
107e225
 
488ad14
bb2b27d
107e225
 
03ee38b
823b4fc
 
2bf8d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6397347
2bf8d08
 
 
 
 
597c5b2
2bf8d08
 
b4e9dfa
2bf8d08
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
tags:
- moe
- merge
- epfl-llm/meditron-7b
- microsoft/Orca-2-7b
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/MVYcLAR1Inm5dY-XHiAhe.png)

# Medorca-2x7b

Medorca-2x7b is a Mixure of Experts (MoE) made with the following models:
* [epfl-llm/meditron-7b](https://huggingface.co./epfl-llm/meditron-7b)
* [microsoft/Orca-2-7b](https://huggingface.co./microsoft/Orca-2-7b)

## Evaluations

| Benchmark | Medorca-2x7b | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b |
| --- | --- | --- | --- | --- | --- |
| MedMCQA |  |  |  |  |  |
| ClosedPubMedQA |  |  |  |  |  |
| PubMedQA |  |  |  |  |  |
| MedQA |  |  |  |  |  |
| MedQA4 |  |  |  |  |  |
| MedicationQA |  |  |  |  |  |
| MMLU Medical |  |  |  |  |  |
| MMLU | 53.3 | **56.37** |  |  |  |
| TruthfulQA | 48.04 | **52.45** |  |  |  |
| GSM8K | 20.64 | **47.2** |  |  |  |
| ARC | 54.1 | 54.1 |  |  |  |
| HellaSwag | 76.04 | **76.19** |  |  |  |
| Winogrande | **74.51** | 73.48 |  |  |  |

More details on the Open LLM Leaderboard evaluation results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Technoculture__Medorca-2x7b.)

## 🧩 Configuration

```yaml
base_model: microsoft/Orca-2-7b
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: epfl-llm/meditron-7b
    positive_prompts: 
      - "How does sleep affect cardiovascular health?"
      - "Could a plant-based diet improve arthritis symptoms?"
      - "A patient comes in with symptoms of dizziness and nausea..."
      - "When discussing diabetes management, the key factors to consider are..."
      - "The differential diagnosis for a headache with visual aura could include..."
    negative_prompts:
      - "Recommend a good recipe for a vegetarian lasagna."
      - "Give an overview of the French Revolution."
      - "Explain how a digital camera captures an image."
      - "What are the environmental impacts of deforestation?"
      - "The recent advancements in artificial intelligence have led to developments in..."
      - "The fundamental concepts in economics include ideas like supply and demand, which explain..."
  - source_model: microsoft/Orca-2-7b
    positive_prompts:
      - "Here is a funny joke for you -"
      - "When considering the ethical implications of artificial intelligence, one must take into account..."
      - "In strategic planning, a company must analyze its strengths and weaknesses, which involves..."
      - "Understanding consumer behavior in marketing requires considering factors like..."
      - "The debate on climate change solutions hinges on arguments that..."
    negative_prompts:
      - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize..."
      - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for..."
      - "Explaining the importance of vaccination, a healthcare professional should highlight..."
```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Technoculture/Medorca-2x7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16},
)

messages = [{"role": "user", "content": "Why am i feeling so tired this month?"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```