--- license: apache-2.0 tags: - merge - mergekit - wanglab/ClinicalCamel-70B - epfl-llm/meditron-70b - allenai/tulu-2-dpo-70b base_model: - NousResearch/Llama-2-70b-hf - allenai/tulu-2-dpo-70b --- # Medmerge-tulu-70b Medmerge-tulu-70b is a merge of the following models: * [wanglab/ClinicalCamel-70B](https://huggingface.co./wanglab/ClinicalCamel-70B) * [epfl-llm/meditron-70b](https://huggingface.co./epfl-llm/meditron-70b) * [allenai/tulu-2-dpo-70b](https://huggingface.co./allenai/tulu-2-dpo-70b) ## 🧩 Configuration ```yaml models: - model: NousResearch/Llama-2-70b-hf # no parameters necessary for base model - model: wanglab/ClinicalCamel-70B parameters: weight: 0.08 density: 0.45 - model: epfl-llm/meditron-70b parameters: weight: 0.08 density: 0.45 - model: allenai/tulu-2-dpo-70b parameters: weight: 0.08 density: 0.45 merge_method: dare_ties base_model: NousResearch/Llama-2-70b-hf parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medmerge-tulu-70b" messages = [{"role": "user", "content": "I am feeling sleepy these days"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```