--- license: apache-2.0 tags: - merge - mergekit - epfl-llm/meditron-70b - allenai/tulu-2-dpo-70b --- # Medmerge-tulu-70b Medmerge-tulu-70b is a merge of the following models: * [wanglab/ClinicalCamel-70B](https://huggingface.co./wanglab/ClinicalCamel-70B) * [epfl-llm/meditron-70b](https://huggingface.co./epfl-llm/meditron-70b) * [allenai/tulu-2-dpo-70b](https://huggingface.co./allenai/tulu-2-dpo-70b) # Open LLM Leaderboard ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/ajm6Z9cCmd74ERdz4xdHs.png) | Model Name | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | -------------------- | -------- | --------- | ------ | ---------- | ---------- | -------- | | tulu-2-dpo-70b | 72.1 | 88.99 | 69.84 | 65.78 | 83.27 | 62.62 | | Medmerge-tulu-70b | 67.81 | 87.46 | 70.1 | 47.89 | 83.43 | 56.56 | ## Performance Clinical Camel demonstrates competitive performance on medical benchmarks. **Table: Five-Shot Performance of Clinical Camel-70B (C70), GPT3.5, GPT4, and Med-PaLM 2 on Various Medical Datasets** | Dataset | Medmerge-tulu-70b | ClinicalCamel-70B | GPT3.5 | GPT4 | Med-PaLM 2 | |-----------------------------|-------------------|-------------------|--------|-------|--------------| | MMLU Anatomy | 66.6 | 65.2 | 60.7 | 80.0 | 77.8 | | MMLU Clinical Knowledge | 72.0 | 72.8 | 68.7 | 86.4 | 88.3 | | MMLU College Biology | 84.7 | 81.2 | 72.9 | 93.8 | 94.4 | | MMLU College Medicine | 64.2 | 68.2 | 63.6 | 76.3 | 80.9 | | MMLU Medical Genetics | 76.0 | 69.0 | 68.0 | 92.0 | 90.0 | | MMLU Professional Medicine | 75.7 | 75.0 | 69.8 | 93.8 | 95.2 | | MedMCQA | | 54.2 | 51.0 | 72.4 | 71.3 | | MedQA (USMLE) | | 60.7 | 53.6 | 81.4 | 79.7 | | PubMedQA | | 77.9 | 60.2 | 74.4 | 79.2 | | USMLE Sample Exam | | 64.3 | 58.5 | 86.6 | - | ## 🧩 Configuration ```yaml models: - model: NousResearch/Llama-2-70b-hf # no parameters necessary for base model - model: wanglab/ClinicalCamel-70B parameters: weight: 0.08 density: 0.45 - model: epfl-llm/meditron-70b parameters: weight: 0.08 density: 0.45 - model: allenai/tulu-2-dpo-70b parameters: weight: 0.08 density: 0.45 merge_method: dare_ties base_model: NousResearch/Llama-2-70b-hf parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medmerge-tulu-70b" messages = [{"role": "user", "content": "I am feeling sleepy these days"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```