--- license: apache-2.0 datasets: - TIGER-Lab/MMEB-train language: - en base_model: - Qwen/Qwen2-VL-7B-Instruct library_name: transformers --- A new checkpoint trained using [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co./Qwen/Qwen2-VL-7B-Instruct) with an enhanced training setup (LoRA tuning, batch size of 2048, maximum sub-dataset size of 100k). This model has shown significantly improved performance on MMEB & Flickr30K compared to the previous models using Phi-3.5 and llava-v1.6-mistral as backbone. This repo contains the code and data for [VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks](https://arxiv.org/abs/2410.05160). In this paper, we focus on building a unified multimodal embedding model suitable for a wide range of tasks. Our approach is based on transforming an existing, well-trained Vision-Language Model (VLM) into an embedding model. ## Github - [Github](https://github.com/TIGER-AI-Lab/VLM2Vec) ## Data Our model is being trained on MMEB-train and evaluated on MMEB-eval with contrastive learning. We only use in-batch negatives for training. - Train data: https://huggingface.co./datasets/TIGER-Lab/MMEB-train - Eval data: https://huggingface.co./datasets/TIGER-Lab/MMEB-eval ## Performance This model outperforms the baselines and previous version of VLM2Vec by a large margin. | Model | Classification | VQA | Retrieval | Grounding | IND | OOD | Overall | |---------------------------------------|---------------|------|-----------|-----------|------|------|---------| | Phi-3.5-V, Full-model fine-tuned (#crop=4) | 52.8 | 50.3 | 57.8 | 72.3 | 62.8 | 47.4 | 55.9 | | Phi-3.5-V, LoRA | 54.8 | 54.9 | 62.3 | 79.5 | 66.5 | 52.0 | 60.1 | | LLaVA-1.6, LoRA | 54.7 | 50.3 | 56.2 | 64.0 | 61.0 | 47.5 | 55.0 | | LLaVA-1.6, LoRA | 61.2 | 49.9 | 67.4 | 86.1 | 67.5 | 57.1 | 62.9 | | Qwen2-VL-2B, LoRA | 59.0 | 49.4 | 65.4 | 73.4 | 66.0 | 52.6 | 60.1 | | **Qwen2-VL-7B, LoRA (this model)** | **62.6** | **57.8** | **69.9** | 81.7 | **72.2** | **57.8** | **65.8** | ![image/png](https://github.com/TIGER-AI-Lab/VLM2Vec/blob/main/figures/vlm2vec_results.png?raw=true) ## How to use VLM2Vec (More details please refer to our Github repo, here is just a simple demo.) First you can clone our github ```bash git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git pip -r requirements.txt ``` ```python from src.model import MMEBModel from src.arguments import ModelArguments from src.model_utils import load_processor, QWEN2_VL, vlm_image_tokens from PIL import Image import torch model_args = ModelArguments( model_name='Qwen/Qwen2-VL-7B-Instruct', checkpoint_path='TIGER-Lab/VLM2Vec-Qwen2VL-7B', pooling='last', normalize=True, model_backbone='qwen2_vl', lora=True ) processor = load_processor(model_args) model = MMEBModel.load(model_args) model = model.to('cuda', dtype=torch.bfloat16) model.eval() # Image + Text -> Text inputs = processor(text=f'{vlm_image_tokens[QWEN2_VL]} Represent the given image with the following question: What is in the image', images=Image.open('figures/example.jpg'), return_tensors="pt") inputs = {key: value.to('cuda') for key, value in inputs.items()} inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0) inputs['image_grid_thw'] = inputs['image_grid_thw'].unsqueeze(0) qry_output = model(qry=inputs)["qry_reps"] string = 'A cat and a dog' inputs = processor(text=string, images=None, return_tensors="pt") inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] print(string, '=', model.compute_similarity(qry_output, tgt_output)) ## A cat and a dog = tensor([[0.3301]], device='cuda:0', dtype=torch.bfloat16) string = 'A cat and a tiger' inputs = processor(text=string, images=None, return_tensors="pt") inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] print(string, '=', model.compute_similarity(qry_output, tgt_output)) ## A cat and a tiger = tensor([[0.2891]], device='cuda:0', dtype=torch.bfloat16) ``` ## Citation ``` @article{jiang2024vlm2vec, title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks}, author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu}, journal={arXiv preprint arXiv:2410.05160}, year={2024} }