--- base_model: - SvalTek/L3-ColdBrew-Astrid - FPHam/L3-8B-Everything-COT - FPHam/L3-8B-Everything-COT - FPHam/L3-8B-Everything-COT tags: - merge - mergekit - lazymergekit - SvalTek/L3-ColdBrew-Astrid - FPHam/L3-8B-Everything-COT --- # L3-ColdBrew-Arcadia L3-ColdBrew-Arcadia is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [SvalTek/L3-ColdBrew-Astrid](https://huggingface.co./SvalTek/L3-ColdBrew-Astrid) * [FPHam/L3-8B-Everything-COT](https://huggingface.co./FPHam/L3-8B-Everything-COT) * [FPHam/L3-8B-Everything-COT](https://huggingface.co./FPHam/L3-8B-Everything-COT) * [FPHam/L3-8B-Everything-COT](https://huggingface.co./FPHam/L3-8B-Everything-COT) ## 🧩 Configuration ```yaml merge_method: passthrough slices: # Lower Layers (0–11): ColdBrew’s foundation - sources: - layer_range: [0, 12] model: SvalTek/L3-ColdBrew-Astrid # Reasoning Layers (12–23): Use FPHam for logical depth - sources: - layer_range: [12, 24] model: FPHam/L3-8B-Everything-COT # Reflection Layers (24–31): Use FPHam for reasoning and reflection - sources: - layer_range: [24, 32] model: FPHam/L3-8B-Everything-COT # Duplicate Layers (24–31): Add valid parameter growth - sources: - layer_range: [24, 32] # First duplicate model: FPHam/L3-8B-Everything-COT - layer_range: [24, 32] # Second duplicate model: FPHam/L3-8B-Everything-COT ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "SvalTek/L3-ColdBrew-Arcadia" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```