File size: 2,186 Bytes
dc74a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model:
- SvalTek/L3-ColdBrew-Astrid
- FPHam/L3-8B-Everything-COT
- FPHam/L3-8B-Everything-COT
- FPHam/L3-8B-Everything-COT
tags:
- merge
- mergekit
- lazymergekit
- SvalTek/L3-ColdBrew-Astrid
- FPHam/L3-8B-Everything-COT
---

# L3-ColdBrew-Arcadia

L3-ColdBrew-Arcadia is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [SvalTek/L3-ColdBrew-Astrid](https://huggingface.co./SvalTek/L3-ColdBrew-Astrid)
* [FPHam/L3-8B-Everything-COT](https://huggingface.co./FPHam/L3-8B-Everything-COT)
* [FPHam/L3-8B-Everything-COT](https://huggingface.co./FPHam/L3-8B-Everything-COT)
* [FPHam/L3-8B-Everything-COT](https://huggingface.co./FPHam/L3-8B-Everything-COT)

## 🧩 Configuration

```yaml
merge_method: passthrough
slices:
  # Lower Layers (0–11): ColdBrew’s foundation
  - sources:
      - layer_range: [0, 12]
        model: SvalTek/L3-ColdBrew-Astrid

  # Reasoning Layers (12–23): Use FPHam for logical depth
  - sources:
      - layer_range: [12, 24]
        model: FPHam/L3-8B-Everything-COT

  # Reflection Layers (24–31): Use FPHam for reasoning and reflection
  - sources:
      - layer_range: [24, 32]
        model: FPHam/L3-8B-Everything-COT

  # Duplicate Layers (24–31): Add valid parameter growth
  - sources:
      - layer_range: [24, 32]  # First duplicate
        model: FPHam/L3-8B-Everything-COT
      - layer_range: [24, 32]  # Second duplicate
        model: FPHam/L3-8B-Everything-COT

```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "SvalTek/L3-ColdBrew-Arcadia"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```