--- license: apache-2.0 --- ``` import torch from transformers import AutoTokenizer, UMT5EncoderModel from diffusers import AutoencoderKLWan, WanPipeline, WanTransformer3DModel, FlowMatchEulerDiscreteScheduler from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler from diffusers.utils import export_to_video from torchvision import transforms import os import cv2 import numpy as np from pathlib import Path import json from safetensors.torch import safe_open device = "cuda" seed = 0 # TODO: impl AutoencoderKLWan vae = vae.from_pretrained("StevenZhang/Wan2.1-VAE_Diff") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vae = vae.to(device) # TODO: impl FlowDPMSolverMultistepScheduler scheduler = UniPCMultistepScheduler(prediction_type='flow_prediction', use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=1.0) text_encoder = UMT5EncoderModel.from_pretrained("google/umt5-xxl", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl") # 14B transformer = WanTransformer3DModel.from_pretrained('StevenZhang/Wan2.1-T2V-14B-Diff', torch_dtype=torch.bfloat16) # transformer = WanTransformer3DModel.from_pretrained('StevenZhang/Wan2.1-T2V-1.3B-Diff', torch_dtype=torch.bfloat16) components = { "transformer": transformer, "vae": vae, "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } pipe = WanPipeline(**components) pipe.to(device) negative_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走' generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "两只拟人化的猫咪身穿舒适的拳击装备,戴着鲜艳的手套,在聚光灯照射的舞台上激烈对战", "negative_prompt": negative_prompt, # TODO "generator": generator, "num_inference_steps": 50, "flow_shift": 3.0, "guidance_scale": 5.0, "height": 480, "width": 832, "num_frames": 81, "max_sequence_length": 512, "output_type": "np" } video = pipe(**inputs).frames[0] print(video.shape) export_to_video(video, "output.mp4", fps=16) ```