--- license: apache-2.0 tags: - Solar Moe - Solar - Lumosia pipeline_tag: text-generation model-index: - name: Lumosia-v2-MoE-4x10.7 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.39 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.87 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.45 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 68.48 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.21 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.13 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 name: Open LLM Leaderboard --- # Lumosia-v2-MoE-4x10.7 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/fKdOLTQNerr2fYYnWOiQD.png) The Lumosia Series upgraded with Lumosia V2. # What's New in Lumosia V2? Lumosia V2 takes the original vision of being an "all-rounder" and refines it with more nuanced capabilities. Topic/Prompt Based Approach: Diverging from the keyword-based approach of its counterpart, Umbra. Context and Coherence: With a base context of 8k scrolling window and the ability to maintain coherence up to 16k. Balanced and Versatile: The core ethos of Lumosia V2 is balance. It's designed to be your go-to assistant. Experimentation and User-Centric Development: Lumosia V2 remains an experimental model, a mosaic of the best-performing Solar models, (selected based on user experience). This version is a testament to the idea that innovation is a journey, not a destination. Template: ``` ### System: ### USER:{prompt} ### Assistant: ``` Settings: ``` Temp: 1.0 min-p: 0.02-0.1 ``` ## Evals: * Avg: * ARC: * HellaSwag: * MMLU: * T-QA: * Winogrande: * GSM8K: ## Examples: ``` Example 1: User: Lumosia: ``` ``` Example 2: User: Lumosia: ``` ## 🧩 Configuration ``` yaml base_model: DopeorNope/SOLARC-M-10.7B gate_mode: hidden dtype: bfloat16 experts: - source_model: DopeorNope/SOLARC-M-10.7B positive_prompts: negative_prompts: - source_model: Sao10K/Fimbulvetr-10.7B-v1 [Updated] positive_prompts: negative_prompts: - source_model: jeonsworld/CarbonVillain-en-10.7B-v4 [Updated] positive_prompts: negative_prompts: - source_model: kyujinpy/Sakura-SOLAR-Instruct positive_prompts: negative_prompts: ``` ## 💻 Usage ``` python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Steelskull/Lumosia-v2-MoE-4x10.7" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Steelskull__Lumosia-v2-MoE-4x10.7) | Metric |Value| |---------------------------------|----:| |Avg. |73.75| |AI2 Reasoning Challenge (25-Shot)|70.39| |HellaSwag (10-Shot) |87.87| |MMLU (5-Shot) |66.45| |TruthfulQA (0-shot) |68.48| |Winogrande (5-shot) |84.21| |GSM8k (5-shot) |65.13|