--- language: - multilingual - ar - cs - de - en - es - et - fi - fr - gu - hi - it - ja - kk - ko - lt - lv - my - ne - nl - ro - ru - si - tr - vi - zh - af - az - bn - fa - he - hr - id - ka - km - mk - ml - mn - mr - pl - ps - pt - sv - sw - ta - te - th - tl - uk - ur - xh - gl - sl tags: - transformers - text-generation-inference - code - PyTorch library_name: transformers --- # mBART-50 one to many multilingual machine translation GGML This model is a fine-tuned checkpoint of [TheBloke-Llama-2-13B](https://huggingface.co./TheBloke/Llama-2-13B-chat-GGML). `mbart-large-50-one-to-many-mmt` is fine-tuned for multilingual machine translation. It was introduced in [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper. The model can translate English to other 49 languages mentioned below. To translate into a target language, the target language id is forced as the first generated token. To force the target language id as the first generated token, pass the `forced_bos_token_id` parameter to the `generate` method. ```python from transformers import MBartForConditionalGeneration, MBart50TokenizerFast article_en = "The head of the United Nations says there is no military solution in Syria" model = MBartForConditionalGeneration.from_pretrained("SnypzZz/Llama2-13b-Language-translate") tokenizer = MBart50TokenizerFast.from_pretrained("SnypzZz/Llama2-13b-Language-translate", src_lang="en_XX") model_inputs = tokenizer(article_en, return_tensors="pt") # translate from English to Hindi generated_tokens = model.generate( **model_inputs, forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"] ) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => 'संयुक्त राष्ट्र के नेता कहते हैं कि सीरिया में कोई सैन्य समाधान नहीं है' # translate from English to Chinese generated_tokens = model.generate( **model_inputs, forced_bos_token_id=tokenizer.lang_code_to_id["zh_CN"] ) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => '联合国首脑说,叙利亚没有军事解决办法' ``` See the [model hub](https://huggingface.co./models?filter=mbart-50) to look for more fine-tuned versions. ## Languages covered Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI) ## BibTeX entry and citation info ``` @article{tang2020multilingual, title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning}, author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan}, year={2020}, eprint={2008.00401}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Discord For further support, and discussions on these models and AI in general, join us at: [SnypzZz's Discord server](https://discord.gg/g9MnGrAAyT) PS i am a real gaming fanatic and this is also my gaming server so if anyone wants to play VALORANT or any other games, feel free to ping me--- @SNYPER#1942. ## instagram [SnypzZz's Instagram](https://www.instagram.com/1nonly.lel/?next=%2F) ## LinkedIn [SnypzZz's LinkedIn profile](https://www.linkedin.com/in/damodar-hegde-6a367720a/)