File size: 4,837 Bytes
515b3de f1a2fe7 ae3a42f f1a2fe7 ae3a42f 0608844 ae3a42f 515b3de ae3a42f 0608844 cc29995 eef6a56 0608844 df1d4d4 0608844 30a4b45 0608844 30a4b45 0608844 30a4b45 0608844 ae3a42f f1a2fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
license: cc0-1.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- Open-Orca/SlimOrca
base_model: 152334H/miqu-1-70b-sf
model-index:
- name: Senku-70B-Full
results: []
---
# ShinojiResearch/Senku-70B-Full
[<img src="https://cdna.artstation.com/p/assets/images/images/034/109/324/large/bella-factor-senku-ishigami.jpg?1611427638" width="420">](Senku-70B-Full)
## UPDATE: **85.09** EQ-Bench with ChatML teamplate
* EQ-Bench: (Mistral) *84.89* -> **85.09** (ChatML)
* GSM8k: (Mistral) *77.18* -> **71.04** (ChatML)
* Hellaswag: (Mistral) 87.67 -> ??
Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0 (That is the Senku-70B repo, full includes the merge), this is a merge with the leaked model, you can use the other repository to save bandwidth.
**Update**: Upon further testing a score of **85.09** was achieved using ChatML instead of Mistral's prompt.
## Prompt Template
I recommend using the ChatML format instead, I will run more benchmarks. This also fixes the bug with Miqu dequant failing to provide a stop.
```
<|im_start|>system
Provide some context and/or instructions to the model.
<|im_end|>
<|im_start|>user
The user’s message goes here
<|im_end|>
<|im_start|>assistant <|im_end|>
```
## Kudos
`Credit to https://twitter.com/hu_yifei for providing GSM & Hellaswag. It is the first open weight model to dethrone GPT-4 on EQ bench.`
## Base Model Details
This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co./152334H/miqu-1-70b-sf) on the Slimorca dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3110
## Training procedure
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: 152334H/miqu-1-70b-sf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Open-Orca/SlimOrca
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9043 | 0.0 | 1 | 0.6387 |
| 0.5612 | 0.25 | 881 | 0.3279 |
| 0.6044 | 0.5 | 1762 | 0.3177 |
| 0.6592 | 0.75 | 2643 | 0.3110 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_ShinojiResearch__Senku-70B-Full)
| Metric |Value|
|---------------------------------|----:|
|Avg. |75.44|
|AI2 Reasoning Challenge (25-Shot)|71.50|
|HellaSwag (10-Shot) |87.88|
|MMLU (5-Shot) |75.20|
|TruthfulQA (0-shot) |61.96|
|Winogrande (5-shot) |84.77|
|GSM8k (5-shot) |71.34|
|