File size: 4,837 Bytes
515b3de
f1a2fe7
ae3a42f
 
 
f1a2fe7
 
ae3a42f
 
0608844
ae3a42f
515b3de
ae3a42f
 
 
0608844
 
 
 
 
 
cc29995
eef6a56
0608844
df1d4d4
0608844
30a4b45
 
0608844
30a4b45
 
 
 
 
 
 
0608844
30a4b45
0608844
 
ae3a42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a2fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
license: cc0-1.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- Open-Orca/SlimOrca
base_model: 152334H/miqu-1-70b-sf
model-index:
- name: Senku-70B-Full
  results: []
---

# ShinojiResearch/Senku-70B-Full

[<img src="https://cdna.artstation.com/p/assets/images/images/034/109/324/large/bella-factor-senku-ishigami.jpg?1611427638" width="420">](Senku-70B-Full)
## UPDATE: **85.09** EQ-Bench with ChatML teamplate
* EQ-Bench: (Mistral) *84.89* -> **85.09** (ChatML)
* GSM8k: (Mistral) *77.18* -> **71.04** (ChatML)
* Hellaswag: (Mistral) 87.67 -> ??

Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0 (That is the Senku-70B repo, full includes the merge), this is a merge with the leaked model, you can use the other repository to save bandwidth.

**Update**: Upon further testing a score of **85.09** was achieved using ChatML instead of Mistral's prompt. 

## Prompt Template

I recommend using the ChatML format instead, I will run more benchmarks. This also fixes the bug with Miqu dequant failing to provide a stop. 
```
<|im_start|>system 
Provide some context and/or instructions to the model.
<|im_end|> 
<|im_start|>user 
The user’s message goes here
<|im_end|> 
<|im_start|>assistant <|im_end|>
```

## Kudos
`Credit to https://twitter.com/hu_yifei for providing GSM & Hellaswag. It is the first open weight model to dethrone GPT-4 on EQ bench.`

## Base Model Details
This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co./152334H/miqu-1-70b-sf) on the Slimorca dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3110

## Training procedure

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: 152334H/miqu-1-70b-sf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Open-Orca/SlimOrca
    type: sharegpt
    conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
```

</details><br>

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9043        | 0.0   | 1    | 0.6387          |
| 0.5612        | 0.25  | 881  | 0.3279          |
| 0.6044        | 0.5   | 1762 | 0.3177          |
| 0.6592        | 0.75  | 2643 | 0.3110          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_ShinojiResearch__Senku-70B-Full)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |75.44|
|AI2 Reasoning Challenge (25-Shot)|71.50|
|HellaSwag (10-Shot)              |87.88|
|MMLU (5-Shot)                    |75.20|
|TruthfulQA (0-shot)              |61.96|
|Winogrande (5-shot)              |84.77|
|GSM8k (5-shot)                   |71.34|