--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: swin-finetuned-food101 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.4166666666666667 - name: F1 type: f1 value: 0.5882352941176471 - name: Precision type: precision value: 0.4166666666666667 - name: Recall type: recall value: 1.0 --- # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7046 - Accuracy: 0.4167 - F1: 0.5882 - Precision: 0.4167 - Recall: 1.0 - Auc: 0.5742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.6978 | 1.0 | 14 | 0.6847 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.5717 | | 0.7025 | 2.0 | 28 | 0.7120 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5570 | | 0.6946 | 3.0 | 42 | 0.6955 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5662 | | 0.6935 | 4.0 | 56 | 0.7047 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5644 | | 0.6935 | 5.0 | 70 | 0.7046 | 0.4167 | 0.5882 | 0.4167 | 1.0 | 0.5742 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0