Image Segmentation
FBAGSTM commited on
Commit
8276a81
·
verified ·
1 Parent(s): c4ee5f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -6
README.md CHANGED
@@ -1,6 +1,74 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/instance_segmentation/yolov8n_seg/LICENSE.md
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: sla0044
4
+ license_link: >-
5
+ https://github.com/STMicroelectronics/stm32ai-modelzoo/instance_segmentation/yolov8n_seg/LICENSE.md
6
+ pipeline_tag: image-segmentation
7
+ ---
8
+ # Yolov8n_seg
9
+
10
+ ## **Use case** : `Instance segmentation`
11
+
12
+ # Model description
13
+
14
+ Yolov8n_seg is a lightweight and efficient model designed for instance segmentation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov8n_seg indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems.
15
+
16
+ Yolov8n_seg is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter.
17
+
18
+ ## Network information
19
+ | Network Information | Value |
20
+ |-------------------------|--------------------------------------|
21
+ | Framework | Tensorflow |
22
+ | Quantization | int8 |
23
+ | Paper | https://arxiv.org/pdf/2305.09972 |
24
+
25
+
26
+
27
+ ## Recommended platform
28
+ | Platform | Supported | Recommended |
29
+ |----------|-----------|-------------|
30
+ | STM32L0 | [] | [] |
31
+ | STM32L4 | [] | [] |
32
+ | STM32U5 | [] | [] |
33
+ | STM32MP1 | [] | [] |
34
+ | STM32MP2 | [x] | [] |
35
+ | STM32N6| [x] | [x] |
36
+
37
+ ---
38
+ # Performances
39
+
40
+ ## Metrics
41
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
42
+
43
+
44
+ ### Reference **NPU** memory footprint based on COCO dataset
45
+
46
+ |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
47
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
48
+ | [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_uf_seg_coco-st.tflite) | COCO | Int8 | 256x256x3 | STM32N6 | 2128 | 0.0 | 3425.39 | 10.0.0 | 2.0.0
49
+ | [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_uf_seg_coco-st.tflite) | COCO | Int8 | 320x320x3 | STM32N6 | 2564.06 | 0.0 | 3467.56 | 10.0.0 | 2.0.0 |
50
+
51
+
52
+
53
+ ### Reference **NPU** inference time based on COCO Person dataset
54
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
55
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
56
+ | [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_uf_seg_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 37.59 | 26.61 | 10.0.0 | 2.0.0 |
57
+ | [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_uf_seg_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 53.21 | 18.79 | 10.0.0 | 2.0.0 |
58
+
59
+
60
+
61
+ ## Retraining and Integration in a Simple Example
62
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services).
63
+ For instance segmentation, the models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/).
64
+
65
+ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/segment/#train) to retrain the model.
66
+
67
+
68
+ ## References
69
+
70
+ <a id="1">[1]</a> T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (ECCV), 2014. [Link](https://arxiv.org/abs/1405.0312)
71
+
72
+ <a id="2">[2]</a> Ultralytics, "YOLOv8: Next-Generation Object Detection and Segmentation Model." Ultralytics, 2023. [Link](https://github.com/ultralytics/ultralytics)
73
+
74
+