Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,74 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/instance_segmentation/yolov8n_seg/LICENSE.md
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: sla0044
|
4 |
+
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/instance_segmentation/yolov8n_seg/LICENSE.md
|
6 |
+
pipeline_tag: image-segmentation
|
7 |
+
---
|
8 |
+
# Yolov8n_seg
|
9 |
+
|
10 |
+
## **Use case** : `Instance segmentation`
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
Yolov8n_seg is a lightweight and efficient model designed for instance segmentation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov8n_seg indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems.
|
15 |
+
|
16 |
+
Yolov8n_seg is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter.
|
17 |
+
|
18 |
+
## Network information
|
19 |
+
| Network Information | Value |
|
20 |
+
|-------------------------|--------------------------------------|
|
21 |
+
| Framework | Tensorflow |
|
22 |
+
| Quantization | int8 |
|
23 |
+
| Paper | https://arxiv.org/pdf/2305.09972 |
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
## Recommended platform
|
28 |
+
| Platform | Supported | Recommended |
|
29 |
+
|----------|-----------|-------------|
|
30 |
+
| STM32L0 | [] | [] |
|
31 |
+
| STM32L4 | [] | [] |
|
32 |
+
| STM32U5 | [] | [] |
|
33 |
+
| STM32MP1 | [] | [] |
|
34 |
+
| STM32MP2 | [x] | [] |
|
35 |
+
| STM32N6| [x] | [x] |
|
36 |
+
|
37 |
+
---
|
38 |
+
# Performances
|
39 |
+
|
40 |
+
## Metrics
|
41 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
42 |
+
|
43 |
+
|
44 |
+
### Reference **NPU** memory footprint based on COCO dataset
|
45 |
+
|
46 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
47 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
48 |
+
| [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_uf_seg_coco-st.tflite) | COCO | Int8 | 256x256x3 | STM32N6 | 2128 | 0.0 | 3425.39 | 10.0.0 | 2.0.0
|
49 |
+
| [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_uf_seg_coco-st.tflite) | COCO | Int8 | 320x320x3 | STM32N6 | 2564.06 | 0.0 | 3467.56 | 10.0.0 | 2.0.0 |
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
### Reference **NPU** inference time based on COCO Person dataset
|
54 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
55 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
56 |
+
| [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_uf_seg_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 37.59 | 26.61 | 10.0.0 | 2.0.0 |
|
57 |
+
| [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_uf_seg_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 53.21 | 18.79 | 10.0.0 | 2.0.0 |
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
## Retraining and Integration in a Simple Example
|
62 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services).
|
63 |
+
For instance segmentation, the models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/).
|
64 |
+
|
65 |
+
Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/segment/#train) to retrain the model.
|
66 |
+
|
67 |
+
|
68 |
+
## References
|
69 |
+
|
70 |
+
<a id="1">[1]</a> T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (ECCV), 2014. [Link](https://arxiv.org/abs/1405.0312)
|
71 |
+
|
72 |
+
<a id="2">[2]</a> Ultralytics, "YOLOv8: Next-Generation Object Detection and Segmentation Model." Ultralytics, 2023. [Link](https://github.com/ultralytics/ultralytics)
|
73 |
+
|
74 |
+
|