File size: 4,963 Bytes
4794c86
98665a1
 
4794c86
 
 
 
 
 
98665a1
 
 
1f44fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4794c86
 
 
 
 
 
 
 
d198c52
 
d6c0e1e
d198c52
34762c0
 
 
d25f7b9
 
 
 
d198c52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4794c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f44fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
language:
- ko
license: cc-by-nc-4.0
tags:
- merge
- lazymergekit
- LDCC/LDCC-SOLAR-10.7B
- upstage/SOLAR-10.7B-Instruct-v1.0
base_model:
- LDCC/LDCC-SOLAR-10.7B
- upstage/SOLAR-10.7B-Instruct-v1.0
model-index:
- name: SOLAR-10.7B-slerp
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.17
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SOLAR-10.7B-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.91
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SOLAR-10.7B-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.73
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SOLAR-10.7B-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 67.42
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SOLAR-10.7B-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.06
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SOLAR-10.7B-slerp
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 62.17
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SOLAR-10.7B-slerp
      name: Open LLM Leaderboard
---

# SOLAR-10.7B-slerp

SOLAR-10.7B-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co./LDCC/LDCC-SOLAR-10.7B)
* [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0)

## Github

[https://github.com/sunjin7725/SOLAR-10.7b-slerp](https://github.com/sunjin7725/SOLAR-10.7b-slerp)

## Benchmark

### Open-Ko-LLM-Leaderboard

| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
|   56.93 |  53.58 |        62.03 |   53.31 |         57.16 |           58.56 |

## How to use

```Python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

repo = 'SJ-Donald/SOLAR-10.7B-slerp'

tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
    repo,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map='auto'
)
```


## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: LDCC/LDCC-SOLAR-10.7B
        layer_range: [0, 48]
      - model: upstage/SOLAR-10.7B-Instruct-v1.0
        layer_range: [0, 48]
merge_method: slerp
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
tokenizer_source: union
dtype: float16

```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_SJ-Donald__SOLAR-10.7B-slerp)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.58|
|AI2 Reasoning Challenge (25-Shot)|68.17|
|HellaSwag (10-Shot)              |86.91|
|MMLU (5-Shot)                    |66.73|
|TruthfulQA (0-shot)              |67.42|
|Winogrande (5-shot)              |84.06|
|GSM8k (5-shot)                   |62.17|