Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
widget:
|
4 |
+
- text: >
|
5 |
+
<|system|>
|
6 |
+
|
7 |
+
You are a chatbot who can help code!</s>
|
8 |
+
|
9 |
+
<|user|>
|
10 |
+
|
11 |
+
Write me a function to calculate the first 10 digits of the fibonacci
|
12 |
+
sequence in Python and print it out to the CLI.</s>
|
13 |
+
|
14 |
+
<|assistant|>
|
15 |
+
library_name: transformers
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
---
|
18 |
+
# Tiny-llama
|
19 |
+
## Model Description
|
20 |
+
Tiny llamix is a model built from [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) using [Charles Goddard's](https://github.com/cg123) mergekit on the mixtral branch.
|
21 |
+
|
22 |
+
## Configuration
|
23 |
+
```yaml
|
24 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
25 |
+
gate_mode: hidden
|
26 |
+
dtype: bfloat16
|
27 |
+
experts:
|
28 |
+
- source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
29 |
+
positive_prompts:
|
30 |
+
- "M1"
|
31 |
+
- source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
32 |
+
positive_prompts:
|
33 |
+
- "M2"
|
34 |
+
```
|
35 |
+
## Usage
|
36 |
+
It can be used like any other model
|
37 |
+
```python
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
#load model and tokenizer
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("SE6446/Tiny-llamix").to("cuda")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("SE6446/Tiny-llamix")
|
42 |
+
#write and tokenize prompt
|
43 |
+
instruction = '''<|system|>\nYou are a chatbot who can help code!</s>
|
44 |
+
<|user|> Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.</s>
|
45 |
+
<|assistant|>'''
|
46 |
+
inputs = tokenizer(instruction, return_tensors="pt", return_attention_mask=False).to("cuda")
|
47 |
+
|
48 |
+
#generate
|
49 |
+
outputs = model.generate(**inputs, max_length=200)
|
50 |
+
|
51 |
+
#print
|
52 |
+
text = tokenizer.batch_decode(outputs)[0]
|
53 |
+
print(text)
|
54 |
+
```
|
55 |
+
## Performance (coming soon!)
|