--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter18_sftsd1 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter18_sftsd1 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co./google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2012 - Num Input Tokens Seen: 4866032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 1 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.4189 | 0.0527 | 5 | 1.2765 | 258624 | | 0.9994 | 0.1053 | 10 | 1.2087 | 518872 | | 0.9465 | 0.1580 | 15 | 1.2227 | 764216 | | 0.6926 | 0.2107 | 20 | 1.2787 | 1024832 | | 0.7235 | 0.2633 | 25 | 1.2728 | 1288048 | | 0.6502 | 0.3160 | 30 | 1.2796 | 1549192 | | 0.5507 | 0.3687 | 35 | 1.2801 | 1810408 | | 0.4606 | 0.4213 | 40 | 1.2544 | 2071688 | | 0.3668 | 0.4740 | 45 | 1.2498 | 2323016 | | 0.358 | 0.5267 | 50 | 1.2442 | 2589208 | | 0.3527 | 0.5793 | 55 | 1.2084 | 2844384 | | 0.4372 | 0.6320 | 60 | 1.2294 | 3100696 | | 0.3068 | 0.6847 | 65 | 1.2174 | 3351336 | | 0.3254 | 0.7373 | 70 | 1.2254 | 3615008 | | 0.3402 | 0.7900 | 75 | 1.2190 | 3868904 | | 0.3489 | 0.8427 | 80 | 1.2200 | 4132088 | | 0.2991 | 0.8953 | 85 | 1.2094 | 4391104 | | 0.2674 | 0.9480 | 90 | 1.2146 | 4654296 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1