--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter18_sftsd0 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter18_sftsd0 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co./google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2320 - Num Input Tokens Seen: 4965616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.2383 | 0.0535 | 5 | 1.2809 | 261784 | | 1.0702 | 0.1070 | 10 | 1.2352 | 527160 | | 0.9047 | 0.1604 | 15 | 1.2298 | 796832 | | 0.7863 | 0.2139 | 20 | 1.2596 | 1057200 | | 0.7233 | 0.2674 | 25 | 1.2640 | 1317152 | | 0.6138 | 0.3209 | 30 | 1.2867 | 1585112 | | 0.6639 | 0.3743 | 35 | 1.2563 | 1848712 | | 0.4351 | 0.4278 | 40 | 1.2637 | 2116952 | | 0.4406 | 0.4813 | 45 | 1.2563 | 2389216 | | 0.4663 | 0.5348 | 50 | 1.2317 | 2659560 | | 0.5592 | 0.5882 | 55 | 1.2441 | 2932656 | | 0.4722 | 0.6417 | 60 | 1.2254 | 3199512 | | 0.5026 | 0.6952 | 65 | 1.2319 | 3467576 | | 0.4221 | 0.7487 | 70 | 1.2160 | 3732536 | | 0.3425 | 0.8021 | 75 | 1.2294 | 4000632 | | 0.453 | 0.8556 | 80 | 1.2140 | 4266888 | | 0.4114 | 0.9091 | 85 | 1.2336 | 4531504 | | 0.4125 | 0.9626 | 90 | 1.2095 | 4801232 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1