josephliu-roblox
commited on
Commit
•
a6b8100
1
Parent(s):
39d9319
Add README and supporting code
Browse files- README.md +45 -3
- images/human_eval_pr_curve.png +0 -0
- inference.py +110 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,3 +1,45 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Description
|
2 |
+
We present a large classification model trained on a manually curated real-world dataset that can be used as a new
|
3 |
+
benchmark for advancing research in toxicity detection and classification.
|
4 |
+
Our model is fine-tuned on the [WavLM base plus](https://arxiv.org/abs/2110.13900) with 2,374 hours of audio clips from
|
5 |
+
voice chat for multilabel classification. The audio clips are automatically labeled using a synthetic data pipeline
|
6 |
+
described in [our blog post](link to blog post here). A single output can have multiple labels.
|
7 |
+
The model outputs a n by 6 output tensor where the inferred labels are `Profanity`, `DatingAndSexting`, `Racist`,
|
8 |
+
`Bullying`, `Other`, `NoViolation`. `Other` consists of policy violation categories with low prevalence such as drugs
|
9 |
+
and alcohol or self-harm that are combined into a single category.
|
10 |
+
|
11 |
+
|
12 |
+
We evaluated this model on a data set with human annotated labels that contained a total of 9,795 samples with the class
|
13 |
+
distribution shown below. Note that we did not include the "other" category in this evaluation data set.
|
14 |
+
|
15 |
+
|Class|Number of examples| Duration (hours)|% of dataset|
|
16 |
+
|---|---|---|---|
|
17 |
+
|Profanity | 4893| 15.38 | 49.95%|
|
18 |
+
|DatingAndSexting | 688 | 2.52 | 7.02% |
|
19 |
+
|Racist | 889 | 3.10 | 9.08% |
|
20 |
+
|Bullying | 1256 | 4.25 | 12.82% |
|
21 |
+
|NoViolation | 4185 | 9.93 | 42.73% |
|
22 |
+
|
23 |
+
|
24 |
+
If we set the same threshold across all classes and treat the model as a binary classifier across all 4 toxicity classes
|
25 |
+
(`Profanity`, `DatingAndSexting`, `Racist`, `Bullying`), we get a binarized average precision of 94.48%. The precision
|
26 |
+
recall curve is as shown below.
|
27 |
+
|
28 |
+
|
29 |
+
<p align="center">
|
30 |
+
<img src="images/human_eval_pr_curve.png" alt="PR Curve" width="500"/>
|
31 |
+
</p>
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
The dependencies for the inference file can be installed as follows:
|
35 |
+
```
|
36 |
+
pip install -r requirements.txt
|
37 |
+
```
|
38 |
+
The inference file contains useful helper functions to preprocess the audio file for proper inference.
|
39 |
+
To run the inference file, please run the following command:
|
40 |
+
```
|
41 |
+
python inference.py --audio_file <your audio file path> --model_path <path to Huggingface model>
|
42 |
+
```
|
43 |
+
You can get the model weights either by downloading from the model releases page [here](https://github.com/Roblox/voice-safety-classifier/releases/tag/vs-classifier-v1), or from HuggingFace under
|
44 |
+
[`roblox/voice-safety-classifier`](https://huggingface.co/Roblox/voice-safety-classifier). If `model_path` isn’t
|
45 |
+
specified, the model will be loaded directly from HuggingFace.
|
images/human_eval_pr_curve.png
ADDED
inference.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright © 2024 Roblox Corporation
|
2 |
+
|
3 |
+
"""
|
4 |
+
This file gives a sample demonstration of how to use the given functions in Python, for the Voice Safety Classifier model.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import librosa
|
9 |
+
import numpy as np
|
10 |
+
import argparse
|
11 |
+
from transformers import WavLMForSequenceClassification
|
12 |
+
|
13 |
+
|
14 |
+
def feature_extract_simple(
|
15 |
+
wav,
|
16 |
+
sr=16_000,
|
17 |
+
win_len=15.0,
|
18 |
+
win_stride=15.0,
|
19 |
+
do_normalize=False,
|
20 |
+
):
|
21 |
+
"""simple feature extraction for wavLM
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
wav : str or array-like
|
25 |
+
path to the wav file, or array-like
|
26 |
+
sr : int, optional
|
27 |
+
sample rate, by default 16_000
|
28 |
+
win_len : float, optional
|
29 |
+
window length, by default 15.0
|
30 |
+
win_stride : float, optional
|
31 |
+
window stride, by default 15.0
|
32 |
+
do_normalize: bool, optional
|
33 |
+
whether to normalize the input, by default False.
|
34 |
+
Returns
|
35 |
+
-------
|
36 |
+
np.ndarray
|
37 |
+
batched input to wavLM
|
38 |
+
"""
|
39 |
+
if type(wav) == str:
|
40 |
+
signal, _ = librosa.core.load(wav, sr=sr)
|
41 |
+
else:
|
42 |
+
try:
|
43 |
+
signal = np.array(wav).squeeze()
|
44 |
+
except Exception as e:
|
45 |
+
print(e)
|
46 |
+
raise RuntimeError
|
47 |
+
batched_input = []
|
48 |
+
stride = int(win_stride * sr)
|
49 |
+
l = int(win_len * sr)
|
50 |
+
if len(signal) / sr > win_len:
|
51 |
+
for i in range(0, len(signal), stride):
|
52 |
+
if i + int(win_len * sr) > len(signal):
|
53 |
+
# padding the last chunk to make it the same length as others
|
54 |
+
chunked = np.pad(signal[i:], (0, l - len(signal[i:])))
|
55 |
+
else:
|
56 |
+
chunked = signal[i : i + l]
|
57 |
+
if do_normalize:
|
58 |
+
chunked = (chunked - np.mean(chunked)) / (np.std(chunked) + 1e-7)
|
59 |
+
batched_input.append(chunked)
|
60 |
+
if i + int(win_len * sr) > len(signal):
|
61 |
+
break
|
62 |
+
else:
|
63 |
+
if do_normalize:
|
64 |
+
signal = (signal - np.mean(signal)) / (np.std(signal) + 1e-7)
|
65 |
+
batched_input.append(signal)
|
66 |
+
return np.stack(batched_input) # [N, T]
|
67 |
+
|
68 |
+
|
69 |
+
def infer(model, inputs):
|
70 |
+
output = model(inputs)
|
71 |
+
probs = torch.sigmoid(torch.Tensor(output.logits))
|
72 |
+
return probs
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
parser = argparse.ArgumentParser()
|
77 |
+
parser.add_argument(
|
78 |
+
"--audio_file",
|
79 |
+
type=str,
|
80 |
+
help="File to run inference",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--model_path",
|
84 |
+
type=str,
|
85 |
+
default="roblox/voice-safety-classifier",
|
86 |
+
help="checkpoint file of model",
|
87 |
+
)
|
88 |
+
args = parser.parse_args()
|
89 |
+
labels_name_list = [
|
90 |
+
"Profanity",
|
91 |
+
"DatingAndSexting",
|
92 |
+
"Racist",
|
93 |
+
"Bullying",
|
94 |
+
"Other",
|
95 |
+
"NoViolation",
|
96 |
+
]
|
97 |
+
# Model is trained on only 16kHz audio
|
98 |
+
audio, _ = librosa.core.load(args.audio_file, sr=16000)
|
99 |
+
input_np = feature_extract_simple(audio, sr=16000)
|
100 |
+
input_pt = torch.Tensor(input_np)
|
101 |
+
model = WavLMForSequenceClassification.from_pretrained(
|
102 |
+
args.model_path, num_labels=len(labels_name_list)
|
103 |
+
)
|
104 |
+
probs = infer(model, input_pt)
|
105 |
+
probs = probs.reshape(-1, 6).detach().tolist()
|
106 |
+
print(f"Probabilities for {args.audio_file} is:")
|
107 |
+
for chunk_idx in range(len(probs)):
|
108 |
+
print(f"\nSegment {chunk_idx}:")
|
109 |
+
for label_idx, label in enumerate(labels_name_list):
|
110 |
+
print(f"{label} : {probs[chunk_idx][label_idx]}")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
librosa
|
4 |
+
numpy
|