--- tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-large-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 48.0968 --- # pegasus-large-samsum This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co./google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4109 - Rouge1: 48.0968 - Rouge2: 24.6663 - Rougel: 40.2569 - Rougelsum: 44.0137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 230 | 1.4646 | 45.0631 | 22.5567 | 38.0518 | 41.2694 | | No log | 2.0 | 460 | 1.4203 | 47.4122 | 24.158 | 39.7414 | 43.3485 | | 1.699 | 3.0 | 690 | 1.4109 | 48.0968 | 24.6663 | 40.2569 | 44.0137 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1