--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli pipeline_tag: zero-shot-classification license: apache-2.0 widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA *Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co./Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co./datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co./transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html). In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co./Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier. ## Usage ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/zeroshot_selectra_medium") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """Output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['sociedad', 'cultura', 'economia', 'salud', 'deportes'], 'scores': [0.6450043320655823, 0.16710571944713593, 0.08507631719112396, 0.0759836807847023, 0.026829993352293968]} """ ``` The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** ## Demo and tutorial If you want to see this model in action, we have created a basic tutorial using [Rubrix](https://www.rubrix.ml/), a free and open-source tool to *explore, annotate, and monitor data for NLP*. The tutorial shows you how to evaluate this classifier for news categorization in Spanish, and how it could be used to build a training set for training a supervised classifier (which might be useful if you want obtain more precise results or improve the model over time). You can [find the tutorial here](https://rubrix.readthedocs.io/en/master/tutorials/zeroshot_data_annotation.html). See the video below showing the predictions within the annotation process (see that the predictions are almost correct for every example). ## Metrics | Model | Params | XNLI (acc) | \*MLSUM (acc) | | --- | --- | --- | --- | | [zs BETO](https://huggingface.co./Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 | | zs SELECTRA medium | 41M | **0.807** | **0.589** | | [zs SELECTRA small](https://huggingface.co./Recognai/zeroshot_selectra_small) | **22M** | 0.795 | 0.446 | \*evaluated with zero-shot learning (ZSL) - **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co./datasets/xnli), after finetuning the model on the training portion. - **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co./datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb) ## Training Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon)) - Javier Lopez ([GitHub](https://github.com/javispp))