# Ahma-3B-RAG ## Overview Ahma-7B-RAG is a 7B-parameter language model fine-tuned on **Retrieval-Augmented Generation (RAG) problems** using approximately **20,000 synthetically generated samples**. The synthetic data was created using **Nemotron-70B** and **DeepSeekV3** to improve the model's ability to handle RAG-based tasks effectively. ## Model Information - **Model Name:** Ahma-7B-RAG - **Training Data:** ~20k synthetic RAG samples (Nemotron-70B, DeepSeekV3) - **Use Case:** RAG-based response generation - **Primary Language:** Finnish ## Installation & Dependencies Before using the model, make sure you have the necessary dependencies installed: ```bash pip install torch transformers ``` ```python # Tests were run with the following package versions # You can try with different versions as well but these should at least work import transformers import flash_attn import torch assert transformers.__version__ == 4.48.1 assert torch.__version__ == 2.1.2+cu121 assert flash_attn.__version__ == 2.7.3 ``` ## Model Loading To load the model efficiently, use the following function: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig def load_llama_model(model_path, max_seq_length=2048, dtype=None): """ Loads the LLaMA model with the given configuration. Args: model_path (str): Path or name of the pre-trained model. max_seq_length (int): Maximum sequence length for the model. dtype (torch.dtype or None): Data type for the model. Default is auto-detected. Returns: model, tokenizer, generation_config: Loaded model, tokenizer, and generation config. """ # Set default dtype based on available hardware torch_dtype = torch.bfloat16 if dtype is None else dtype # Load model with appropriate configuration model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch_dtype, device_map='auto', attn_implementation="flash_attention_2" # If you do not have access to GPU supporting flash_attention_2 you can commit this line ) tokenizer = AutoTokenizer.from_pretrained(model_path) generation_config = GenerationConfig( pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.convert_tokens_to_ids("") ) return model, tokenizer, generation_config model_path = "RASMUS/AHMA-7B-RAG" ``` ## Generating Prompts for RAG To generate prompts that incorporate context for RAG-based queries, use the following function: ```python def generate_rag_prompt_message(row): prompt = f'Olet tekoälyavustaja joka vastaa annetun kontekstin perusteella asiantuntevasti ja ystävällisesti käyttäjän kysymyksiin\n\nKonteksti: {row["text"]}\n\nKysymys: {row["question"]}\n\nVastaa yllä olevaan kysymykseen annetun kontekstin perusteella.' row["messages"] = [{'role': 'user', 'content': prompt}] return row ``` ## Generating Responses Ahma-7B-RAG can be used to generate responses using the following inference setup: ```python model, tokenizer, generation_config = load_llama_model(model_path) row = {"text": "Rasmus Toivanen loi tämän mallin", "question": "Kuka loi tämän mallin?"} row = generate_rag_prompt_message(row) inputs = tokenizer( [ tokenizer.apply_chat_template(row["messages"], tokenize=False) ] * 1, return_tensors="pt" ).to("cuda") with torch.no_grad(): generated_ids = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], generation_config=generation_config, **{ "temperature": 0.1, "penalty_alpha": 0.6, "min_p": 0.3, "do_sample": True, "max_new_tokens": 300 } ) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True)[0] generated_text_cleaned = generated_text.split('[/INST]')[1].replace('', '').strip() if '[/INST]' in generated_text else generated_text.strip() print(generated_text_cleaned) ```