RASMUS commited on
Commit
6469e95
·
verified ·
1 Parent(s): 4a9cbcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -1
README.md CHANGED
@@ -1 +1,115 @@
1
- Instruction and Testing results coming later...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ahma-3B-RAG
2
+
3
+ ## Overview
4
+ Ahma-7B-RAG is a 7B-parameter language model fine-tuned on **Retrieval-Augmented Generation (RAG) problems** using approximately **20,000 synthetically generated samples**. The synthetic data was created using **Nemotron-70B** and **DeepSeekV3** to improve the model's ability to handle RAG-based tasks effectively.
5
+
6
+ ## Model Information
7
+ - **Model Name:** Ahma-7B-RAG
8
+ - **Training Data:** ~20k synthetic RAG samples (Nemotron-70B, DeepSeekV3)
9
+ - **Use Case:** RAG-based response generation
10
+ - **Primary Language:** Finnish
11
+
12
+ ## Installation & Dependencies
13
+ Before using the model, make sure you have the necessary dependencies installed:
14
+
15
+ ```bash
16
+ pip install torch transformers
17
+ ```
18
+
19
+ ```python
20
+ # Tests were run with the following package versions
21
+ # You can try with different versions as well but these should at least work
22
+ import transformers
23
+ import flash_attn
24
+ import torch
25
+
26
+ assert transformers.__version__ == 4.48.1
27
+ assert torch.__version__ == 2.1.2+cu121
28
+ assert flash_attn.__version__ == 2.7.3
29
+ ```
30
+
31
+ ## Model Loading
32
+ To load the model efficiently, use the following function:
33
+
34
+ ```python
35
+ import torch
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
37
+
38
+ def load_llama_model(model_path, max_seq_length=2048, dtype=None):
39
+ """
40
+ Loads the LLaMA model with the given configuration.
41
+
42
+ Args:
43
+ model_path (str): Path or name of the pre-trained model.
44
+ max_seq_length (int): Maximum sequence length for the model.
45
+ dtype (torch.dtype or None): Data type for the model. Default is auto-detected.
46
+
47
+ Returns:
48
+ model, tokenizer, generation_config: Loaded model, tokenizer, and generation config.
49
+ """
50
+ # Set default dtype based on available hardware
51
+ torch_dtype = torch.bfloat16 if dtype is None else dtype
52
+
53
+ # Load model with appropriate configuration
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ model_path,
56
+ torch_dtype=torch_dtype,
57
+ device_map='auto',
58
+ attn_implementation="flash_attention_2" # If you do not have access to GPU supporting flash_attention_2 you can commit this line
59
+ )
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
62
+
63
+ generation_config = GenerationConfig(
64
+ pad_token_id=tokenizer.eos_token_id,
65
+ eos_token_id=tokenizer.convert_tokens_to_ids("</s>")
66
+ )
67
+
68
+ return model, tokenizer, generation_config
69
+
70
+ model_path = "RASMUS/AHMA-7B-RAG"
71
+ ```
72
+
73
+ ## Generating Prompts for RAG
74
+ To generate prompts that incorporate context for RAG-based queries, use the following function:
75
+
76
+ ```python
77
+ def generate_rag_prompt_message(row):
78
+ prompt = f'Olet tekoälyavustaja joka vastaa annetun kontekstin perusteella asiantuntevasti ja ystävällisesti käyttäjän kysymyksiin\n\nKonteksti: {row["text"]}\n\nKysymys: {row["question"]}\n\nVastaa yllä olevaan kysymykseen annetun kontekstin perusteella.'
79
+ row["messages"] = [{'role': 'user', 'content': prompt}]
80
+ return row
81
+ ```
82
+
83
+ ## Generating Responses
84
+ Ahma-7B-RAG can be used to generate responses using the following inference setup:
85
+
86
+ ```python
87
+ model, tokenizer, generation_config = load_llama_model(model_path)
88
+
89
+ row = {"text": "Rasmus Toivanen loi tämän mallin", "question": "Kuka loi tämän mallin?"}
90
+ row = generate_rag_prompt_message(row)
91
+
92
+ inputs = tokenizer(
93
+ [
94
+ tokenizer.apply_chat_template(row["messages"], tokenize=False)
95
+ ] * 1, return_tensors="pt"
96
+ ).to("cuda")
97
+
98
+ with torch.no_grad():
99
+ generated_ids = model.generate(
100
+ input_ids=inputs["input_ids"],
101
+ attention_mask=inputs["attention_mask"],
102
+ generation_config=generation_config, **{
103
+ "temperature": 0.1,
104
+ "penalty_alpha": 0.6,
105
+ "min_p": 0.3,
106
+ "do_sample": True,
107
+ "max_new_tokens": 300
108
+ }
109
+ )
110
+
111
+ generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True)[0]
112
+ generated_text_cleaned = generated_text.split('[/INST]')[1].replace('</s>', '').strip() if '[/INST]' in generated_text else generated_text.strip()
113
+
114
+ print(generated_text_cleaned)
115
+ ```