Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,115 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ahma-3B-RAG
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
Ahma-7B-RAG is a 7B-parameter language model fine-tuned on **Retrieval-Augmented Generation (RAG) problems** using approximately **20,000 synthetically generated samples**. The synthetic data was created using **Nemotron-70B** and **DeepSeekV3** to improve the model's ability to handle RAG-based tasks effectively.
|
5 |
+
|
6 |
+
## Model Information
|
7 |
+
- **Model Name:** Ahma-7B-RAG
|
8 |
+
- **Training Data:** ~20k synthetic RAG samples (Nemotron-70B, DeepSeekV3)
|
9 |
+
- **Use Case:** RAG-based response generation
|
10 |
+
- **Primary Language:** Finnish
|
11 |
+
|
12 |
+
## Installation & Dependencies
|
13 |
+
Before using the model, make sure you have the necessary dependencies installed:
|
14 |
+
|
15 |
+
```bash
|
16 |
+
pip install torch transformers
|
17 |
+
```
|
18 |
+
|
19 |
+
```python
|
20 |
+
# Tests were run with the following package versions
|
21 |
+
# You can try with different versions as well but these should at least work
|
22 |
+
import transformers
|
23 |
+
import flash_attn
|
24 |
+
import torch
|
25 |
+
|
26 |
+
assert transformers.__version__ == 4.48.1
|
27 |
+
assert torch.__version__ == 2.1.2+cu121
|
28 |
+
assert flash_attn.__version__ == 2.7.3
|
29 |
+
```
|
30 |
+
|
31 |
+
## Model Loading
|
32 |
+
To load the model efficiently, use the following function:
|
33 |
+
|
34 |
+
```python
|
35 |
+
import torch
|
36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
37 |
+
|
38 |
+
def load_llama_model(model_path, max_seq_length=2048, dtype=None):
|
39 |
+
"""
|
40 |
+
Loads the LLaMA model with the given configuration.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
model_path (str): Path or name of the pre-trained model.
|
44 |
+
max_seq_length (int): Maximum sequence length for the model.
|
45 |
+
dtype (torch.dtype or None): Data type for the model. Default is auto-detected.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
model, tokenizer, generation_config: Loaded model, tokenizer, and generation config.
|
49 |
+
"""
|
50 |
+
# Set default dtype based on available hardware
|
51 |
+
torch_dtype = torch.bfloat16 if dtype is None else dtype
|
52 |
+
|
53 |
+
# Load model with appropriate configuration
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_path,
|
56 |
+
torch_dtype=torch_dtype,
|
57 |
+
device_map='auto',
|
58 |
+
attn_implementation="flash_attention_2" # If you do not have access to GPU supporting flash_attention_2 you can commit this line
|
59 |
+
)
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
62 |
+
|
63 |
+
generation_config = GenerationConfig(
|
64 |
+
pad_token_id=tokenizer.eos_token_id,
|
65 |
+
eos_token_id=tokenizer.convert_tokens_to_ids("</s>")
|
66 |
+
)
|
67 |
+
|
68 |
+
return model, tokenizer, generation_config
|
69 |
+
|
70 |
+
model_path = "RASMUS/AHMA-7B-RAG"
|
71 |
+
```
|
72 |
+
|
73 |
+
## Generating Prompts for RAG
|
74 |
+
To generate prompts that incorporate context for RAG-based queries, use the following function:
|
75 |
+
|
76 |
+
```python
|
77 |
+
def generate_rag_prompt_message(row):
|
78 |
+
prompt = f'Olet tekoälyavustaja joka vastaa annetun kontekstin perusteella asiantuntevasti ja ystävällisesti käyttäjän kysymyksiin\n\nKonteksti: {row["text"]}\n\nKysymys: {row["question"]}\n\nVastaa yllä olevaan kysymykseen annetun kontekstin perusteella.'
|
79 |
+
row["messages"] = [{'role': 'user', 'content': prompt}]
|
80 |
+
return row
|
81 |
+
```
|
82 |
+
|
83 |
+
## Generating Responses
|
84 |
+
Ahma-7B-RAG can be used to generate responses using the following inference setup:
|
85 |
+
|
86 |
+
```python
|
87 |
+
model, tokenizer, generation_config = load_llama_model(model_path)
|
88 |
+
|
89 |
+
row = {"text": "Rasmus Toivanen loi tämän mallin", "question": "Kuka loi tämän mallin?"}
|
90 |
+
row = generate_rag_prompt_message(row)
|
91 |
+
|
92 |
+
inputs = tokenizer(
|
93 |
+
[
|
94 |
+
tokenizer.apply_chat_template(row["messages"], tokenize=False)
|
95 |
+
] * 1, return_tensors="pt"
|
96 |
+
).to("cuda")
|
97 |
+
|
98 |
+
with torch.no_grad():
|
99 |
+
generated_ids = model.generate(
|
100 |
+
input_ids=inputs["input_ids"],
|
101 |
+
attention_mask=inputs["attention_mask"],
|
102 |
+
generation_config=generation_config, **{
|
103 |
+
"temperature": 0.1,
|
104 |
+
"penalty_alpha": 0.6,
|
105 |
+
"min_p": 0.3,
|
106 |
+
"do_sample": True,
|
107 |
+
"max_new_tokens": 300
|
108 |
+
}
|
109 |
+
)
|
110 |
+
|
111 |
+
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True)[0]
|
112 |
+
generated_text_cleaned = generated_text.split('[/INST]')[1].replace('</s>', '').strip() if '[/INST]' in generated_text else generated_text.strip()
|
113 |
+
|
114 |
+
print(generated_text_cleaned)
|
115 |
+
```
|