Update modeling_qwen.py
Browse files- modeling_qwen.py +115 -82
modeling_qwen.py
CHANGED
@@ -108,14 +108,6 @@ class QWenAttention(nn.Module):
|
|
108 |
def __init__(self, config):
|
109 |
super().__init__()
|
110 |
|
111 |
-
max_positions = config.max_position_embeddings
|
112 |
-
self.register_buffer(
|
113 |
-
"bias",
|
114 |
-
torch.tril(
|
115 |
-
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
116 |
-
).view(1, 1, max_positions, max_positions),
|
117 |
-
persistent=False,
|
118 |
-
)
|
119 |
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
120 |
self.seq_length = config.seq_length
|
121 |
|
@@ -142,20 +134,6 @@ class QWenAttention(nn.Module):
|
|
142 |
self.is_fp32 = not (config.bf16 or config.fp16)
|
143 |
self.bf16 = config.bf16
|
144 |
|
145 |
-
if config.rotary_pct == 1.0:
|
146 |
-
self.rotary_ndims = None
|
147 |
-
else:
|
148 |
-
assert config.rotary_pct < 1
|
149 |
-
self.rotary_ndims = int(
|
150 |
-
self.hidden_size_per_attention_head * config.rotary_pct
|
151 |
-
)
|
152 |
-
dim = (
|
153 |
-
self.rotary_ndims
|
154 |
-
if self.rotary_ndims is not None
|
155 |
-
else self.hidden_size_per_attention_head
|
156 |
-
)
|
157 |
-
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
158 |
-
|
159 |
self.use_dynamic_ntk = config.use_dynamic_ntk
|
160 |
self.use_logn_attn = config.use_logn_attn
|
161 |
|
@@ -164,11 +142,10 @@ class QWenAttention(nn.Module):
|
|
164 |
for i in range(1, 32768)
|
165 |
]
|
166 |
self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
167 |
-
self._ntk_cached = 1.0
|
168 |
|
169 |
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
170 |
|
171 |
-
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
172 |
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
173 |
|
174 |
if self.scale_attn_weights:
|
@@ -206,7 +183,7 @@ class QWenAttention(nn.Module):
|
|
206 |
return attn_output, attn_weights
|
207 |
|
208 |
def _upcast_and_reordered_attn(
|
209 |
-
self, query, key, value, attention_mask=None, head_mask=None
|
210 |
):
|
211 |
bsz, num_heads, q_seq_len, dk = query.size()
|
212 |
_, _, k_seq_len, _ = key.size()
|
@@ -233,7 +210,7 @@ class QWenAttention(nn.Module):
|
|
233 |
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
234 |
|
235 |
query_length, key_length = query.size(-2), key.size(-2)
|
236 |
-
causal_mask =
|
237 |
:, :, key_length - query_length : key_length, :key_length
|
238 |
]
|
239 |
mask_value = torch.finfo(attn_weights.dtype).min
|
@@ -274,6 +251,8 @@ class QWenAttention(nn.Module):
|
|
274 |
def forward(
|
275 |
self,
|
276 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
|
277 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
278 |
attention_mask: Optional[torch.FloatTensor] = None,
|
279 |
head_mask: Optional[torch.FloatTensor] = None,
|
@@ -284,43 +263,19 @@ class QWenAttention(nn.Module):
|
|
284 |
):
|
285 |
|
286 |
mixed_x_layer = self.c_attn(hidden_states)
|
|
|
287 |
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
288 |
|
289 |
query = self._split_heads(query, self.num_heads, self.head_dim)
|
290 |
key = self._split_heads(key, self.num_heads, self.head_dim)
|
291 |
value = self._split_heads(value, self.num_heads, self.head_dim)
|
292 |
|
293 |
-
kv_seq_len = hidden_states.size()[1]
|
294 |
-
if layer_past:
|
295 |
-
# layer past[0] shape: bs * seq_len * head_num * dim
|
296 |
-
kv_seq_len += layer_past[0].shape[1]
|
297 |
-
if (
|
298 |
-
self.use_dynamic_ntk
|
299 |
-
and kv_seq_len == hidden_states.size()[1]
|
300 |
-
and not self.training
|
301 |
-
):
|
302 |
-
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
303 |
-
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
304 |
-
ntk_alpha = max(ntk_alpha, 1)
|
305 |
-
self._ntk_cached = ntk_alpha
|
306 |
-
else:
|
307 |
-
ntk_alpha = self._ntk_cached
|
308 |
-
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
|
309 |
-
hidden_states.device
|
310 |
-
)
|
311 |
-
|
312 |
-
if rotary_pos_emb is not None:
|
313 |
-
if isinstance(rotary_pos_emb, tuple):
|
314 |
-
rotary_pos_emb = rotary_pos_emb
|
315 |
-
else:
|
316 |
-
rotary_pos_emb = (rotary_pos_emb,) * 2
|
317 |
-
|
318 |
if rotary_pos_emb is not None:
|
|
|
|
|
|
|
319 |
q_pos_emb, k_pos_emb = rotary_pos_emb
|
320 |
# Slice the pos emb for current inference
|
321 |
-
cur_len = query.shape[1]
|
322 |
-
q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
|
323 |
-
k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
|
324 |
query = apply_rotary_pos_emb(query, q_pos_emb)
|
325 |
key = apply_rotary_pos_emb(key, k_pos_emb)
|
326 |
|
@@ -346,13 +301,14 @@ class QWenAttention(nn.Module):
|
|
346 |
key = key.permute(0, 2, 1, 3)
|
347 |
value = value.permute(0, 2, 1, 3)
|
348 |
attn_output, attn_weight = self._attn(
|
349 |
-
query, key, value, attention_mask, head_mask
|
350 |
)
|
351 |
context_layer = self._merge_heads(
|
352 |
attn_output, self.num_heads, self.head_dim
|
353 |
)
|
354 |
|
355 |
attn_output = self.c_proj(context_layer)
|
|
|
356 |
outputs = (attn_output, present)
|
357 |
if output_attentions:
|
358 |
outputs += (attn_weight,)
|
@@ -379,7 +335,6 @@ class QWenMLP(nn.Module):
|
|
379 |
output = self.c_proj(intermediate_parallel)
|
380 |
return output
|
381 |
|
382 |
-
|
383 |
class QWenBlock(nn.Module):
|
384 |
def __init__(self, config):
|
385 |
super().__init__()
|
@@ -401,6 +356,8 @@ class QWenBlock(nn.Module):
|
|
401 |
def forward(
|
402 |
self,
|
403 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
|
404 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
405 |
attention_mask: Optional[torch.FloatTensor] = None,
|
406 |
head_mask: Optional[torch.FloatTensor] = None,
|
@@ -413,6 +370,8 @@ class QWenBlock(nn.Module):
|
|
413 |
|
414 |
attn_outputs = self.attn(
|
415 |
layernorm_output,
|
|
|
|
|
416 |
layer_past=layer_past,
|
417 |
attention_mask=attention_mask,
|
418 |
head_mask=head_mask,
|
@@ -488,14 +447,50 @@ class QWenModel(QWenPreTrainedModel):
|
|
488 |
self.embed_dim = config.hidden_size
|
489 |
|
490 |
self.gradient_checkpointing = False
|
|
|
|
|
491 |
|
492 |
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
493 |
|
494 |
self.drop = nn.Dropout(config.emb_dropout_prob)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
self.h = nn.ModuleList(
|
496 |
[
|
497 |
QWenBlock(
|
498 |
-
config
|
499 |
)
|
500 |
for i in range(config.num_hidden_layers)
|
501 |
]
|
@@ -556,7 +551,7 @@ class QWenModel(QWenPreTrainedModel):
|
|
556 |
output_hidden_states: Optional[bool] = None,
|
557 |
return_dict: Optional[bool] = None,
|
558 |
):
|
559 |
-
if past_key_values is None and
|
560 |
bos_pos = torch.where(input_ids == self.config.visual['image_start_id'])
|
561 |
eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1)
|
562 |
assert (bos_pos[0] == eos_pos[0]).all()
|
@@ -637,6 +632,25 @@ class QWenModel(QWenPreTrainedModel):
|
|
637 |
|
638 |
hidden_states = inputs_embeds
|
639 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
hidden_states = self.drop(hidden_states)
|
641 |
if images is not None:
|
642 |
for idx, (i, a, b) in enumerate(img_pos):
|
@@ -670,6 +684,8 @@ class QWenModel(QWenPreTrainedModel):
|
|
670 |
outputs = torch.utils.checkpoint.checkpoint(
|
671 |
create_custom_forward(block),
|
672 |
hidden_states,
|
|
|
|
|
673 |
None,
|
674 |
attention_mask,
|
675 |
head_mask[i],
|
@@ -680,6 +696,8 @@ class QWenModel(QWenPreTrainedModel):
|
|
680 |
outputs = block(
|
681 |
hidden_states,
|
682 |
layer_past=layer_past,
|
|
|
|
|
683 |
attention_mask=attention_mask,
|
684 |
head_mask=head_mask[i],
|
685 |
encoder_hidden_states=encoder_hidden_states,
|
@@ -690,10 +708,10 @@ class QWenModel(QWenPreTrainedModel):
|
|
690 |
|
691 |
hidden_states = outputs[0]
|
692 |
if use_cache is True:
|
693 |
-
presents = presents + (outputs[
|
694 |
|
695 |
if output_attentions:
|
696 |
-
all_self_attentions = all_self_attentions + (outputs[1],)
|
697 |
|
698 |
hidden_states = self.ln_f(hidden_states)
|
699 |
hidden_states = hidden_states.view(output_shape)
|
@@ -890,10 +908,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
890 |
append_history: bool = True,
|
891 |
stream: Optional[bool] = _SENTINEL,
|
892 |
stop_words_ids: Optional[List[List[int]]] = None,
|
|
|
893 |
**kwargs,
|
894 |
) -> Tuple[str, HistoryType]:
|
|
|
|
|
895 |
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
896 |
-
assert
|
897 |
if history is None:
|
898 |
history = []
|
899 |
if stop_words_ids is None:
|
@@ -901,24 +922,25 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
901 |
|
902 |
max_window_size = kwargs.get('max_window_size', None)
|
903 |
if max_window_size is None:
|
904 |
-
max_window_size =
|
905 |
raw_text, context_tokens = make_context(
|
906 |
tokenizer,
|
907 |
query,
|
908 |
history=history,
|
909 |
system=system,
|
910 |
max_window_size=max_window_size,
|
911 |
-
chat_format=
|
912 |
)
|
913 |
|
914 |
stop_words_ids.extend(get_stop_words_ids(
|
915 |
-
|
916 |
))
|
917 |
input_ids = torch.tensor([context_tokens]).to(self.device)
|
918 |
outputs = self.generate(
|
919 |
input_ids,
|
920 |
-
stop_words_ids
|
921 |
-
return_dict_in_generate
|
|
|
922 |
**kwargs,
|
923 |
)
|
924 |
|
@@ -927,7 +949,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
927 |
tokenizer,
|
928 |
raw_text_len=len(raw_text),
|
929 |
context_length=len(context_tokens),
|
930 |
-
chat_format=
|
931 |
verbose=False,
|
932 |
errors='replace'
|
933 |
)
|
@@ -945,9 +967,11 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
945 |
system: str = "You are a helpful assistant.",
|
946 |
stop_words_ids: Optional[List[List[int]]] = None,
|
947 |
logits_processor: Optional[LogitsProcessorList] = None,
|
|
|
948 |
**kwargs,
|
949 |
) -> Generator[str, Any, None]:
|
950 |
-
|
|
|
951 |
if history is None:
|
952 |
history = []
|
953 |
if stop_words_ids is None:
|
@@ -955,23 +979,23 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
955 |
|
956 |
max_window_size = kwargs.get('max_window_size', None)
|
957 |
if max_window_size is None:
|
958 |
-
max_window_size =
|
959 |
raw_text, context_tokens = make_context(
|
960 |
tokenizer,
|
961 |
query,
|
962 |
history=history,
|
963 |
system=system,
|
964 |
max_window_size=max_window_size,
|
965 |
-
chat_format=
|
966 |
)
|
967 |
|
968 |
stop_words_ids.extend(get_stop_words_ids(
|
969 |
-
|
970 |
))
|
971 |
if stop_words_ids is not None:
|
972 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
973 |
stop_words_ids=stop_words_ids,
|
974 |
-
eos_token_id=
|
975 |
)
|
976 |
if logits_processor is None:
|
977 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
@@ -982,7 +1006,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
982 |
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
983 |
self.__class__.generate_stream = NewGenerationMixin.generate
|
984 |
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
985 |
-
stream_config = StreamGenerationConfig(**
|
|
|
986 |
def stream_generator():
|
987 |
outputs = []
|
988 |
for token in self.generate_stream(
|
@@ -1011,17 +1036,19 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1011 |
streamer: Optional["BaseStreamer"] = None,
|
1012 |
**kwargs,
|
1013 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
|
|
|
|
1014 |
# Process stop_words_ids.
|
1015 |
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
1016 |
if stop_words_ids is None and generation_config is not None:
|
1017 |
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
1018 |
if stop_words_ids is None:
|
1019 |
-
stop_words_ids = getattr(
|
1020 |
|
1021 |
if stop_words_ids is not None:
|
1022 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
1023 |
stop_words_ids=stop_words_ids,
|
1024 |
-
eos_token_id=
|
1025 |
)
|
1026 |
if logits_processor is None:
|
1027 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
@@ -1069,14 +1096,19 @@ class RotaryEmbedding(torch.nn.Module):
|
|
1069 |
self._ntk_alpha_cached = ntk_alpha
|
1070 |
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
1071 |
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
|
|
1072 |
emb = torch.cat((freqs, freqs), dim=-1)
|
1073 |
from einops import rearrange
|
1074 |
|
1075 |
-
|
|
|
|
|
|
|
1076 |
|
1077 |
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
1078 |
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
1079 |
-
|
|
|
1080 |
|
1081 |
|
1082 |
def _rotate_half(x):
|
@@ -1088,19 +1120,20 @@ def _rotate_half(x):
|
|
1088 |
|
1089 |
|
1090 |
def apply_rotary_pos_emb(t, freqs):
|
|
|
1091 |
if apply_rotary_emb_func is not None and t.is_cuda:
|
1092 |
t_ = t.float()
|
1093 |
-
|
1094 |
-
|
1095 |
-
sin = freqs[:, : freqs.shape[-1] // 2].sin()
|
1096 |
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
1097 |
return output
|
1098 |
else:
|
1099 |
-
rot_dim = freqs.shape[-1]
|
|
|
1100 |
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
1101 |
t_ = t_.float()
|
1102 |
t_pass_ = t_pass_.float()
|
1103 |
-
t_ = (t_ *
|
1104 |
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1105 |
|
1106 |
|
|
|
108 |
def __init__(self, config):
|
109 |
super().__init__()
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
112 |
self.seq_length = config.seq_length
|
113 |
|
|
|
134 |
self.is_fp32 = not (config.bf16 or config.fp16)
|
135 |
self.bf16 = config.bf16
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
self.use_dynamic_ntk = config.use_dynamic_ntk
|
138 |
self.use_logn_attn = config.use_logn_attn
|
139 |
|
|
|
142 |
for i in range(1, 32768)
|
143 |
]
|
144 |
self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
|
|
|
145 |
|
146 |
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
147 |
|
148 |
+
def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
|
149 |
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
150 |
|
151 |
if self.scale_attn_weights:
|
|
|
183 |
return attn_output, attn_weights
|
184 |
|
185 |
def _upcast_and_reordered_attn(
|
186 |
+
self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
|
187 |
):
|
188 |
bsz, num_heads, q_seq_len, dk = query.size()
|
189 |
_, _, k_seq_len, _ = key.size()
|
|
|
210 |
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
211 |
|
212 |
query_length, key_length = query.size(-2), key.size(-2)
|
213 |
+
causal_mask = registered_causal_mask[
|
214 |
:, :, key_length - query_length : key_length, :key_length
|
215 |
]
|
216 |
mask_value = torch.finfo(attn_weights.dtype).min
|
|
|
251 |
def forward(
|
252 |
self,
|
253 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
254 |
+
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
255 |
+
registered_causal_mask: Optional[torch.Tensor] = None,
|
256 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
257 |
attention_mask: Optional[torch.FloatTensor] = None,
|
258 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
263 |
):
|
264 |
|
265 |
mixed_x_layer = self.c_attn(hidden_states)
|
266 |
+
|
267 |
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
268 |
|
269 |
query = self._split_heads(query, self.num_heads, self.head_dim)
|
270 |
key = self._split_heads(key, self.num_heads, self.head_dim)
|
271 |
value = self._split_heads(value, self.num_heads, self.head_dim)
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
if rotary_pos_emb is not None:
|
274 |
+
cur_len = query.shape[1]
|
275 |
+
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
276 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
277 |
q_pos_emb, k_pos_emb = rotary_pos_emb
|
278 |
# Slice the pos emb for current inference
|
|
|
|
|
|
|
279 |
query = apply_rotary_pos_emb(query, q_pos_emb)
|
280 |
key = apply_rotary_pos_emb(key, k_pos_emb)
|
281 |
|
|
|
301 |
key = key.permute(0, 2, 1, 3)
|
302 |
value = value.permute(0, 2, 1, 3)
|
303 |
attn_output, attn_weight = self._attn(
|
304 |
+
query, key, value, registered_causal_mask, attention_mask, head_mask
|
305 |
)
|
306 |
context_layer = self._merge_heads(
|
307 |
attn_output, self.num_heads, self.head_dim
|
308 |
)
|
309 |
|
310 |
attn_output = self.c_proj(context_layer)
|
311 |
+
|
312 |
outputs = (attn_output, present)
|
313 |
if output_attentions:
|
314 |
outputs += (attn_weight,)
|
|
|
335 |
output = self.c_proj(intermediate_parallel)
|
336 |
return output
|
337 |
|
|
|
338 |
class QWenBlock(nn.Module):
|
339 |
def __init__(self, config):
|
340 |
super().__init__()
|
|
|
356 |
def forward(
|
357 |
self,
|
358 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
359 |
+
rotary_pos_emb: Optional[List[torch.Tensor]] = None,
|
360 |
+
registered_causal_mask: Optional[torch.Tensor] = None,
|
361 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
362 |
attention_mask: Optional[torch.FloatTensor] = None,
|
363 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
370 |
|
371 |
attn_outputs = self.attn(
|
372 |
layernorm_output,
|
373 |
+
rotary_pos_emb,
|
374 |
+
registered_causal_mask=registered_causal_mask,
|
375 |
layer_past=layer_past,
|
376 |
attention_mask=attention_mask,
|
377 |
head_mask=head_mask,
|
|
|
447 |
self.embed_dim = config.hidden_size
|
448 |
|
449 |
self.gradient_checkpointing = False
|
450 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
451 |
+
self.seq_length = config.seq_length
|
452 |
|
453 |
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
454 |
|
455 |
self.drop = nn.Dropout(config.emb_dropout_prob)
|
456 |
+
|
457 |
+
if config.rotary_pct == 1.0:
|
458 |
+
self.rotary_ndims = None
|
459 |
+
else:
|
460 |
+
assert config.rotary_pct < 1
|
461 |
+
self.rotary_ndims = int(
|
462 |
+
config.kv_channels * config.rotary_pct
|
463 |
+
)
|
464 |
+
dim = (
|
465 |
+
self.rotary_ndims
|
466 |
+
if self.rotary_ndims is not None
|
467 |
+
else config.kv_channels
|
468 |
+
)
|
469 |
+
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
470 |
+
|
471 |
+
self.use_flash_attn = config.use_flash_attn
|
472 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
473 |
+
self.registered_causal_mask = None
|
474 |
+
# if (
|
475 |
+
# self.use_flash_attn
|
476 |
+
# and flash_attn_unpadded_func is not None
|
477 |
+
# and not self.is_fp32
|
478 |
+
# ):
|
479 |
+
# self.registered_causal_mask = None
|
480 |
+
# else:
|
481 |
+
# max_positions = config.max_position_embeddings
|
482 |
+
# self.register_buffer(
|
483 |
+
# "registered_causal_mask",
|
484 |
+
# torch.tril(
|
485 |
+
# torch.ones((max_positions, max_positions), dtype=torch.bool)
|
486 |
+
# ).view(1, 1, max_positions, max_positions),
|
487 |
+
# persistent=False,
|
488 |
+
# )
|
489 |
+
|
490 |
self.h = nn.ModuleList(
|
491 |
[
|
492 |
QWenBlock(
|
493 |
+
config
|
494 |
)
|
495 |
for i in range(config.num_hidden_layers)
|
496 |
]
|
|
|
551 |
output_hidden_states: Optional[bool] = None,
|
552 |
return_dict: Optional[bool] = None,
|
553 |
):
|
554 |
+
if past_key_values is None and torch.any(input_ids == self.config.visual['image_start_id']):
|
555 |
bos_pos = torch.where(input_ids == self.config.visual['image_start_id'])
|
556 |
eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1)
|
557 |
assert (bos_pos[0] == eos_pos[0]).all()
|
|
|
632 |
|
633 |
hidden_states = inputs_embeds
|
634 |
|
635 |
+
kv_seq_len = hidden_states.size()[1]
|
636 |
+
if past_key_values[0] is not None:
|
637 |
+
# past key values[0][0] shape: bs * seq_len * head_num * dim
|
638 |
+
kv_seq_len += past_key_values[0][0].shape[1]
|
639 |
+
if (
|
640 |
+
self.use_dynamic_ntk
|
641 |
+
and kv_seq_len == hidden_states.size()[1]
|
642 |
+
and not self.training
|
643 |
+
):
|
644 |
+
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
645 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
646 |
+
ntk_alpha = max(ntk_alpha, 1)
|
647 |
+
else:
|
648 |
+
ntk_alpha = self.rotary_emb._ntk_alpha_cached
|
649 |
+
|
650 |
+
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
|
651 |
+
for idx in range(len(rotary_pos_emb)):
|
652 |
+
rotary_pos_emb[idx] = rotary_pos_emb[idx].to(hidden_states.device)
|
653 |
+
|
654 |
hidden_states = self.drop(hidden_states)
|
655 |
if images is not None:
|
656 |
for idx, (i, a, b) in enumerate(img_pos):
|
|
|
684 |
outputs = torch.utils.checkpoint.checkpoint(
|
685 |
create_custom_forward(block),
|
686 |
hidden_states,
|
687 |
+
rotary_pos_emb,
|
688 |
+
self.registered_causal_mask,
|
689 |
None,
|
690 |
attention_mask,
|
691 |
head_mask[i],
|
|
|
696 |
outputs = block(
|
697 |
hidden_states,
|
698 |
layer_past=layer_past,
|
699 |
+
rotary_pos_emb=rotary_pos_emb,
|
700 |
+
registered_causal_mask=self.registered_causal_mask,
|
701 |
attention_mask=attention_mask,
|
702 |
head_mask=head_mask[i],
|
703 |
encoder_hidden_states=encoder_hidden_states,
|
|
|
708 |
|
709 |
hidden_states = outputs[0]
|
710 |
if use_cache is True:
|
711 |
+
presents = presents + (outputs[1],)
|
712 |
|
713 |
if output_attentions:
|
714 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
715 |
|
716 |
hidden_states = self.ln_f(hidden_states)
|
717 |
hidden_states = hidden_states.view(output_shape)
|
|
|
908 |
append_history: bool = True,
|
909 |
stream: Optional[bool] = _SENTINEL,
|
910 |
stop_words_ids: Optional[List[List[int]]] = None,
|
911 |
+
generation_config: Optional[GenerationConfig] = None,
|
912 |
**kwargs,
|
913 |
) -> Tuple[str, HistoryType]:
|
914 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
915 |
+
|
916 |
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
|
917 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
918 |
if history is None:
|
919 |
history = []
|
920 |
if stop_words_ids is None:
|
|
|
922 |
|
923 |
max_window_size = kwargs.get('max_window_size', None)
|
924 |
if max_window_size is None:
|
925 |
+
max_window_size = generation_config.max_window_size
|
926 |
raw_text, context_tokens = make_context(
|
927 |
tokenizer,
|
928 |
query,
|
929 |
history=history,
|
930 |
system=system,
|
931 |
max_window_size=max_window_size,
|
932 |
+
chat_format=generation_config.chat_format,
|
933 |
)
|
934 |
|
935 |
stop_words_ids.extend(get_stop_words_ids(
|
936 |
+
generation_config.chat_format, tokenizer
|
937 |
))
|
938 |
input_ids = torch.tensor([context_tokens]).to(self.device)
|
939 |
outputs = self.generate(
|
940 |
input_ids,
|
941 |
+
stop_words_ids=stop_words_ids,
|
942 |
+
return_dict_in_generate=False,
|
943 |
+
generation_config=generation_config,
|
944 |
**kwargs,
|
945 |
)
|
946 |
|
|
|
949 |
tokenizer,
|
950 |
raw_text_len=len(raw_text),
|
951 |
context_length=len(context_tokens),
|
952 |
+
chat_format=generation_config.chat_format,
|
953 |
verbose=False,
|
954 |
errors='replace'
|
955 |
)
|
|
|
967 |
system: str = "You are a helpful assistant.",
|
968 |
stop_words_ids: Optional[List[List[int]]] = None,
|
969 |
logits_processor: Optional[LogitsProcessorList] = None,
|
970 |
+
generation_config: Optional[GenerationConfig] = None,
|
971 |
**kwargs,
|
972 |
) -> Generator[str, Any, None]:
|
973 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
974 |
+
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
|
975 |
if history is None:
|
976 |
history = []
|
977 |
if stop_words_ids is None:
|
|
|
979 |
|
980 |
max_window_size = kwargs.get('max_window_size', None)
|
981 |
if max_window_size is None:
|
982 |
+
max_window_size = generation_config.max_window_size
|
983 |
raw_text, context_tokens = make_context(
|
984 |
tokenizer,
|
985 |
query,
|
986 |
history=history,
|
987 |
system=system,
|
988 |
max_window_size=max_window_size,
|
989 |
+
chat_format=generation_config.chat_format,
|
990 |
)
|
991 |
|
992 |
stop_words_ids.extend(get_stop_words_ids(
|
993 |
+
generation_config.chat_format, tokenizer
|
994 |
))
|
995 |
if stop_words_ids is not None:
|
996 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
997 |
stop_words_ids=stop_words_ids,
|
998 |
+
eos_token_id=generation_config.eos_token_id,
|
999 |
)
|
1000 |
if logits_processor is None:
|
1001 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
|
1006 |
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
|
1007 |
self.__class__.generate_stream = NewGenerationMixin.generate
|
1008 |
self.__class__.sample_stream = NewGenerationMixin.sample_stream
|
1009 |
+
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
|
1010 |
+
|
1011 |
def stream_generator():
|
1012 |
outputs = []
|
1013 |
for token in self.generate_stream(
|
|
|
1036 |
streamer: Optional["BaseStreamer"] = None,
|
1037 |
**kwargs,
|
1038 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
1039 |
+
generation_config = generation_config if generation_config is not None else self.generation_config
|
1040 |
+
|
1041 |
# Process stop_words_ids.
|
1042 |
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
1043 |
if stop_words_ids is None and generation_config is not None:
|
1044 |
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
1045 |
if stop_words_ids is None:
|
1046 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
1047 |
|
1048 |
if stop_words_ids is not None:
|
1049 |
stop_words_logits_processor = StopWordsLogitsProcessor(
|
1050 |
stop_words_ids=stop_words_ids,
|
1051 |
+
eos_token_id=generation_config.eos_token_id,
|
1052 |
)
|
1053 |
if logits_processor is None:
|
1054 |
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
|
1096 |
self._ntk_alpha_cached = ntk_alpha
|
1097 |
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
1098 |
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
1099 |
+
|
1100 |
emb = torch.cat((freqs, freqs), dim=-1)
|
1101 |
from einops import rearrange
|
1102 |
|
1103 |
+
emb = rearrange(emb, "n d -> 1 n 1 d")
|
1104 |
+
|
1105 |
+
cos, sin = emb.cos(), emb.sin()
|
1106 |
+
self._rotary_pos_emb_cache = [cos, sin]
|
1107 |
|
1108 |
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
1109 |
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
1110 |
+
cos, sin = self._rotary_pos_emb_cache
|
1111 |
+
return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
|
1112 |
|
1113 |
|
1114 |
def _rotate_half(x):
|
|
|
1120 |
|
1121 |
|
1122 |
def apply_rotary_pos_emb(t, freqs):
|
1123 |
+
cos, sin = freqs
|
1124 |
if apply_rotary_emb_func is not None and t.is_cuda:
|
1125 |
t_ = t.float()
|
1126 |
+
cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
|
1127 |
+
sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
|
|
|
1128 |
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
1129 |
return output
|
1130 |
else:
|
1131 |
+
rot_dim = freqs[0].shape[-1]
|
1132 |
+
cos, sin = freqs
|
1133 |
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
1134 |
t_ = t_.float()
|
1135 |
t_pass_ = t_pass_.float()
|
1136 |
+
t_ = (t_ * cos) + (_rotate_half(t_) * sin)
|
1137 |
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1138 |
|
1139 |
|