Quazim0t0 commited on
Commit
033da01
·
verified ·
1 Parent(s): 3a23e3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -1
README.md CHANGED
@@ -26,4 +26,72 @@ datasets:
26
 
27
  Model hasn't been tested yet, will update when model has been.
28
 
29
- If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phi4_turn_r1_distill_thought_function_v1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  Model hasn't been tested yet, will update when model has been.
28
 
29
+ If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phi4_turn_r1_distill_thought_function_v1
30
+
31
+
32
+ # Phi4 Turn R1Distill LoRA Adapters
33
+
34
+ ## Overview
35
+ These **LoRA adapters** were trained using diverse **reasoning datasets** that incorporate structured **Thought** and **Solution** responses to enhance logical inference. This project was designed to **test the R1 dataset** on **Phi-4**, aiming to create a **lightweight, fast, and efficient reasoning model**.
36
+
37
+ All adapters were fine-tuned using an **NVIDIA A800 GPU**, ensuring high performance and compatibility for continued training, merging, or direct deployment.
38
+ As part of an open-source initiative, all resources are made **publicly available** for unrestricted research and development.
39
+
40
+ ---
41
+
42
+ ## LoRA Adapters
43
+ Below are the currently available LoRA fine-tuned adapters (**as of January 30, 2025**):
44
+
45
+ - [Phi4.Turn.R1Distill-Lora1](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora1)
46
+ - [Phi4.Turn.R1Distill-Lora2](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora2)
47
+ - [Phi4.Turn.R1Distill-Lora3](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora3)
48
+ - [Phi4.Turn.R1Distill-Lora4](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora4)
49
+ - [Phi4.Turn.R1Distill-Lora5](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora5)
50
+ - [Phi4.Turn.R1Distill-Lora6](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora6)
51
+ - [Phi4.Turn.R1Distill-Lora7](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora7)
52
+ - [Phi4.Turn.R1Distill-Lora8](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora8)
53
+
54
+ ---
55
+
56
+ ## GGUF Full & Quantized Models
57
+ To facilitate broader testing and real-world inference, **GGUF Full and Quantized versions** have been provided for evaluation on **Open WebUI** and other LLM interfaces.
58
+
59
+ ### **Version 1**
60
+ - [Phi4.Turn.R1Distill.Q8_0](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.Q8_0)
61
+ - [Phi4.Turn.R1Distill.Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.Q4_k)
62
+ - [Phi4.Turn.R1Distill.16bit](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.16bit)
63
+
64
+ ### **Version 1.1**
65
+ - [Phi4.Turn.R1Distill_v1.1_Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.1_Q4_k)
66
+
67
+ ### **Version 1.2**
68
+ - [Phi4.Turn.R1Distill_v1.2_Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.2_Q4_k)
69
+
70
+ ### **Version 1.3**
71
+ - [Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF)
72
+
73
+ ### **Version 1.4**
74
+ - [Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF)
75
+
76
+ ### **Version 1.5**
77
+ - [Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF)
78
+
79
+ ---
80
+
81
+ ## Usage
82
+
83
+ ### **Loading LoRA Adapters with `transformers` and `peft`**
84
+ To load and apply the LoRA adapters on Phi-4, use the following approach:
85
+
86
+ ```python
87
+ from transformers import AutoModelForCausalLM, AutoTokenizer
88
+ from peft import PeftModel
89
+
90
+ base_model = "microsoft/Phi-4"
91
+ lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1"
92
+
93
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
94
+ model = AutoModelForCausalLM.from_pretrained(base_model)
95
+ model = PeftModel.from_pretrained(model, lora_adapter)
96
+
97
+ model.eval()