Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
library_name: transformers
|
5 |
+
license: mit
|
6 |
+
language:
|
7 |
+
- fr
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- french
|
11 |
+
- chocolatine
|
12 |
+
datasets:
|
13 |
+
- jpacifico/french-orca-dpo-pairs-revised
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+

|
19 |
+
|
20 |
+
# QuantFactory/Chocolatine-3B-Instruct-DPO-Revised-GGUF
|
21 |
+
This is quantized version of [jpacifico/Chocolatine-3B-Instruct-DPO-Revised](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised) created using llama.cpp
|
22 |
+
|
23 |
+
# Original Model Card
|
24 |
+
|
25 |
+
|
26 |
+
### Chocolatine-3B-Instruct-DPO-Revised
|
27 |
+
|
28 |
+
DPO fine-tuned of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) (3.82B params)
|
29 |
+
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
|
30 |
+
Chocolatine is a general model and can itself be finetuned to be specialized for specific use cases.
|
31 |
+
Window context = 4k tokens
|
32 |
+
|
33 |
+
### Benchmarks
|
34 |
+
|
35 |
+
The best 3B model on [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (july 2024)
|
36 |
+
5th best < 30B params (average benchmarks).
|
37 |
+
|
38 |
+
### MT-Bench-French
|
39 |
+
|
40 |
+
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) by Bofeng Huang,
|
41 |
+
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
|
42 |
+
|
43 |
+
```
|
44 |
+
########## First turn ##########
|
45 |
+
score
|
46 |
+
model turn
|
47 |
+
gpt-3.5-turbo 1 8.1375
|
48 |
+
Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
|
49 |
+
Daredevil-8B 1 7.8875
|
50 |
+
Daredevil-8B-abliterated 1 7.8375
|
51 |
+
Chocolatine-3B-Instruct-DPO-v1.0 1 7.6875
|
52 |
+
NeuralDaredevil-8B-abliterated 1 7.6250
|
53 |
+
Phi-3-mini-4k-instruct 1 7.2125
|
54 |
+
Meta-Llama-3-8B-Instruct 1 7.1625
|
55 |
+
vigostral-7b-chat 1 6.7875
|
56 |
+
Mistral-7B-Instruct-v0.3 1 6.7500
|
57 |
+
Mistral-7B-Instruct-v0.2 1 6.2875
|
58 |
+
French-Alpaca-7B-Instruct_beta 1 5.6875
|
59 |
+
vigogne-2-7b-chat 1 5.6625
|
60 |
+
vigogne-2-7b-instruct 1 5.1375
|
61 |
+
|
62 |
+
########## Second turn ##########
|
63 |
+
score
|
64 |
+
model turn
|
65 |
+
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
|
66 |
+
gpt-3.5-turbo 2 7.679167
|
67 |
+
Chocolatine-3B-Instruct-DPO-v1.0 2 7.612500
|
68 |
+
NeuralDaredevil-8B-abliterated 2 7.125000
|
69 |
+
Daredevil-8B 2 7.087500
|
70 |
+
Daredevil-8B-abliterated 2 6.873418
|
71 |
+
Meta-Llama-3-8B-Instruct 2 6.800000
|
72 |
+
Mistral-7B-Instruct-v0.2 2 6.512500
|
73 |
+
Mistral-7B-Instruct-v0.3 2 6.500000
|
74 |
+
Phi-3-mini-4k-instruct 2 6.487500
|
75 |
+
vigostral-7b-chat 2 6.162500
|
76 |
+
French-Alpaca-7B-Instruct_beta 2 5.487395
|
77 |
+
vigogne-2-7b-chat 2 2.775000
|
78 |
+
vigogne-2-7b-instruct 2 2.240506
|
79 |
+
|
80 |
+
########## Average ##########
|
81 |
+
score
|
82 |
+
model
|
83 |
+
Chocolatine-3B-Instruct-DPO-Revised 7.962500
|
84 |
+
gpt-3.5-turbo 7.908333
|
85 |
+
Chocolatine-3B-Instruct-DPO-v1.0 7.650000
|
86 |
+
Daredevil-8B 7.487500
|
87 |
+
NeuralDaredevil-8B-abliterated 7.375000
|
88 |
+
Daredevil-8B-abliterated 7.358491
|
89 |
+
Meta-Llama-3-8B-Instruct 6.981250
|
90 |
+
Phi-3-mini-4k-instruct 6.850000
|
91 |
+
Mistral-7B-Instruct-v0.3 6.625000
|
92 |
+
vigostral-7b-chat 6.475000
|
93 |
+
Mistral-7B-Instruct-v0.2 6.400000
|
94 |
+
French-Alpaca-7B-Instruct_beta 5.587866
|
95 |
+
vigogne-2-7b-chat 4.218750
|
96 |
+
vigogne-2-7b-instruct 3.698113
|
97 |
+
```
|
98 |
+
|
99 |
+
### Usage
|
100 |
+
|
101 |
+
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
|
102 |
+
|
103 |
+
You can also run Chocolatine using the following code:
|
104 |
+
|
105 |
+
```python
|
106 |
+
import transformers
|
107 |
+
from transformers import AutoTokenizer
|
108 |
+
|
109 |
+
# Format prompt
|
110 |
+
message = [
|
111 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
112 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
113 |
+
]
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model)
|
115 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
116 |
+
|
117 |
+
# Create pipeline
|
118 |
+
pipeline = transformers.pipeline(
|
119 |
+
"text-generation",
|
120 |
+
model=new_model,
|
121 |
+
tokenizer=tokenizer
|
122 |
+
)
|
123 |
+
|
124 |
+
# Generate text
|
125 |
+
sequences = pipeline(
|
126 |
+
prompt,
|
127 |
+
do_sample=True,
|
128 |
+
temperature=0.7,
|
129 |
+
top_p=0.9,
|
130 |
+
num_return_sequences=1,
|
131 |
+
max_length=200,
|
132 |
+
)
|
133 |
+
print(sequences[0]['generated_text'])
|
134 |
+
```
|
135 |
+
|
136 |
+
### Limitations
|
137 |
+
|
138 |
+
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
|
139 |
+
It does not have any moderation mechanism.
|
140 |
+
|
141 |
+
- **Developed by:** Jonathan Pacifico, 2024
|
142 |
+
- **Model type:** LLM
|
143 |
+
- **Language(s) (NLP):** French, English
|
144 |
+
- **License:** MIT
|