aashish1904 commited on
Commit
81632c0
·
verified ·
1 Parent(s): 02dd1ea

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +144 -0
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ library_name: transformers
5
+ license: mit
6
+ language:
7
+ - fr
8
+ - en
9
+ tags:
10
+ - french
11
+ - chocolatine
12
+ datasets:
13
+ - jpacifico/french-orca-dpo-pairs-revised
14
+ pipeline_tag: text-generation
15
+
16
+ ---
17
+
18
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
19
+
20
+ # QuantFactory/Chocolatine-3B-Instruct-DPO-Revised-GGUF
21
+ This is quantized version of [jpacifico/Chocolatine-3B-Instruct-DPO-Revised](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised) created using llama.cpp
22
+
23
+ # Original Model Card
24
+
25
+
26
+ ### Chocolatine-3B-Instruct-DPO-Revised
27
+
28
+ DPO fine-tuned of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) (3.82B params)
29
+ using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
30
+ Chocolatine is a general model and can itself be finetuned to be specialized for specific use cases.
31
+ Window context = 4k tokens
32
+
33
+ ### Benchmarks
34
+
35
+ The best 3B model on [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (july 2024)
36
+ 5th best < 30B params (average benchmarks).
37
+
38
+ ### MT-Bench-French
39
+
40
+ Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) by Bofeng Huang,
41
+ used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
42
+
43
+ ```
44
+ ########## First turn ##########
45
+ score
46
+ model turn
47
+ gpt-3.5-turbo 1 8.1375
48
+ Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
49
+ Daredevil-8B 1 7.8875
50
+ Daredevil-8B-abliterated 1 7.8375
51
+ Chocolatine-3B-Instruct-DPO-v1.0 1 7.6875
52
+ NeuralDaredevil-8B-abliterated 1 7.6250
53
+ Phi-3-mini-4k-instruct 1 7.2125
54
+ Meta-Llama-3-8B-Instruct 1 7.1625
55
+ vigostral-7b-chat 1 6.7875
56
+ Mistral-7B-Instruct-v0.3 1 6.7500
57
+ Mistral-7B-Instruct-v0.2 1 6.2875
58
+ French-Alpaca-7B-Instruct_beta 1 5.6875
59
+ vigogne-2-7b-chat 1 5.6625
60
+ vigogne-2-7b-instruct 1 5.1375
61
+
62
+ ########## Second turn ##########
63
+ score
64
+ model turn
65
+ Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
66
+ gpt-3.5-turbo 2 7.679167
67
+ Chocolatine-3B-Instruct-DPO-v1.0 2 7.612500
68
+ NeuralDaredevil-8B-abliterated 2 7.125000
69
+ Daredevil-8B 2 7.087500
70
+ Daredevil-8B-abliterated 2 6.873418
71
+ Meta-Llama-3-8B-Instruct 2 6.800000
72
+ Mistral-7B-Instruct-v0.2 2 6.512500
73
+ Mistral-7B-Instruct-v0.3 2 6.500000
74
+ Phi-3-mini-4k-instruct 2 6.487500
75
+ vigostral-7b-chat 2 6.162500
76
+ French-Alpaca-7B-Instruct_beta 2 5.487395
77
+ vigogne-2-7b-chat 2 2.775000
78
+ vigogne-2-7b-instruct 2 2.240506
79
+
80
+ ########## Average ##########
81
+ score
82
+ model
83
+ Chocolatine-3B-Instruct-DPO-Revised 7.962500
84
+ gpt-3.5-turbo 7.908333
85
+ Chocolatine-3B-Instruct-DPO-v1.0 7.650000
86
+ Daredevil-8B 7.487500
87
+ NeuralDaredevil-8B-abliterated 7.375000
88
+ Daredevil-8B-abliterated 7.358491
89
+ Meta-Llama-3-8B-Instruct 6.981250
90
+ Phi-3-mini-4k-instruct 6.850000
91
+ Mistral-7B-Instruct-v0.3 6.625000
92
+ vigostral-7b-chat 6.475000
93
+ Mistral-7B-Instruct-v0.2 6.400000
94
+ French-Alpaca-7B-Instruct_beta 5.587866
95
+ vigogne-2-7b-chat 4.218750
96
+ vigogne-2-7b-instruct 3.698113
97
+ ```
98
+
99
+ ### Usage
100
+
101
+ You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
102
+
103
+ You can also run Chocolatine using the following code:
104
+
105
+ ```python
106
+ import transformers
107
+ from transformers import AutoTokenizer
108
+
109
+ # Format prompt
110
+ message = [
111
+ {"role": "system", "content": "You are a helpful assistant chatbot."},
112
+ {"role": "user", "content": "What is a Large Language Model?"}
113
+ ]
114
+ tokenizer = AutoTokenizer.from_pretrained(new_model)
115
+ prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
116
+
117
+ # Create pipeline
118
+ pipeline = transformers.pipeline(
119
+ "text-generation",
120
+ model=new_model,
121
+ tokenizer=tokenizer
122
+ )
123
+
124
+ # Generate text
125
+ sequences = pipeline(
126
+ prompt,
127
+ do_sample=True,
128
+ temperature=0.7,
129
+ top_p=0.9,
130
+ num_return_sequences=1,
131
+ max_length=200,
132
+ )
133
+ print(sequences[0]['generated_text'])
134
+ ```
135
+
136
+ ### Limitations
137
+
138
+ The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
139
+ It does not have any moderation mechanism.
140
+
141
+ - **Developed by:** Jonathan Pacifico, 2024
142
+ - **Model type:** LLM
143
+ - **Language(s) (NLP):** French, English
144
+ - **License:** MIT