--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9320 - Accuracy: {'accuracy': 0.892} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.3865 | {'accuracy': 0.875} | | 0.4238 | 2.0 | 500 | 0.5617 | {'accuracy': 0.855} | | 0.4238 | 3.0 | 750 | 0.5690 | {'accuracy': 0.89} | | 0.1969 | 4.0 | 1000 | 0.6078 | {'accuracy': 0.903} | | 0.1969 | 5.0 | 1250 | 0.7046 | {'accuracy': 0.896} | | 0.0629 | 6.0 | 1500 | 0.8598 | {'accuracy': 0.895} | | 0.0629 | 7.0 | 1750 | 0.8485 | {'accuracy': 0.894} | | 0.0342 | 8.0 | 2000 | 0.8967 | {'accuracy': 0.896} | | 0.0342 | 9.0 | 2250 | 0.9496 | {'accuracy': 0.89} | | 0.0085 | 10.0 | 2500 | 0.9320 | {'accuracy': 0.892} | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2