{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1469813fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733227780911444898, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0wVT0vgJM/oEu0PTH3474q7qw9ImtRPQAAAAAAAAAA2n+4PeAMkT8dP3k+gVnVviYmPT59pZg9AAAAAAAAAABzDa29oYp/P6dfur02rP++6lUTvrDrkb0AAAAAAAAAAIDHTb0eqqk/RYoFv98wB7+Onws8tP0GvgAAAAAAAAAAABjDPB8Rmz/5TpE9UHvwvtw79Dwipgi8AAAAAAAAAAAzQww9n2L/u07tFT4L+zO+DAFuvaCJDb8AAIA/AACAP00kJj087VI9iKDUPbW3VL6i2rU9YNiQvQAAAAAAAAAAGho5PYVroLkaEzM0SbdEL0vYAzsfG6uzAACAPwAAgD/AvU4+YX4sPzZo5b4+B+2+ICI7vV7gXr4AAAAAAAAAAGaLWz02Swa8tYxBvSzBgb5WpFi8NiuCPgAAgD8AAIA/ZvlGPSnTK7xnRAw9SvuOPNWOmr32hGs9AACAPwAAgD8tnxw+1pcqP8kkkL46w+a+7zUJuoYdzrwAAAAAAAAAAIDjfj2QNr8/KvCePl3RO73Tpkg9fqPfPQAAAAAAAAAARvwcvkmdXj/m+Uu+ffYLv4OMdr6OxAC9AAAAAAAAAADzyzU+bZtOP2OhIj7H2sK+/MGEPrZPwT0AAAAAAAAAANrGXL7Tilo/wt9BvT2s7b7q2ny+Oq0GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCgP9cbBGiMAWyUS+uMAXSUR0CfKFAJb+tKdX2UKGgGR0BzLoHbAUL2aAdL3WgIR0CfKFux8lXzdX2UKGgGR0BxTdyxRl6JaAdL6WgIR0CfKIPNFBppdX2UKGgGR0Bxzv4EfT1DaAdL5GgIR0CfKTxFy7wsdX2UKGgGR0BwFpdVvMr3aAdNBAFoCEdAnyk41+AmRnV9lChoBkdAbrSTGo73f2gHS+poCEdAnymOLrHEM3V9lChoBkdAcxKv4/NZ/2gHS95oCEdAnymONDMNdHV9lChoBkdAcbJUtZmqYWgHS8doCEdAnyoj4Hoou3V9lChoBkdAbg80IkZ75WgHS+doCEdAnyovuogmq3V9lChoBkdAccWQXyiEhGgHS95oCEdAnypJ8F6iTXV9lChoBkdAcDiqxC6YmmgHS/doCEdAnyyvtx+8XnV9lChoBkdAcyDEfT1CgWgHS95oCEdAny1Q6uGKynV9lChoBkdAbpary1/lQ2gHS+toCEdAny1awD/2kHV9lChoBkdAcT59ZzPrwGgHS+xoCEdAny13Yg7o0XV9lChoBkdATZpCa7VawGgHS5xoCEdAny3dxAB1cXV9lChoBkdAc8V/lyR0VGgHTQ4BaAhHQJ8t4qEvkBF1fZQoaAZHQG8TLBsQ/X5oB00CAWgIR0CfLk/xDst1dX2UKGgGR0By+FMCcPOIaAdL2WgIR0CfLlvXK8tgdX2UKGgGR0BxZhJVbRnfaAdL+mgIR0CfLltzjm0WdX2UKGgGR0BwyS6nR9gGaAdNEwFoCEdAny5oddVvM3V9lChoBkdAc0n3PzFuN2gHTQkBaAhHQJ8ugA6uGK11fZQoaAZHQHKZI0Q9RrJoB0v/aAhHQJ8vDa/RE4N1fZQoaAZHQHAyNRR/EwZoB0vaaAhHQJ8vNUCJXQt1fZQoaAZHQHJU/bblA/toB00CAWgIR0CfL3Q/5ckddX2UKGgGR0Bzf/yYoiLVaAdL7GgIR0CfL63azu4PdX2UKGgGR0ByHqoqCpWFaAdNDQFoCEdAny+vNu+AVnV9lChoBkdAc2R8PnSv1WgHS/toCEdAn0M32EkB0nV9lChoBkdAcY9ywfQrtmgHS/BoCEdAn0OUsjFAFHV9lChoBkdAcvnpDeCTU2gHS/doCEdAn0PwJHAh0XV9lChoBkdAcWWLOiWVvGgHS9doCEdAn0RXktEofHV9lChoBkdAcn02UB4lhWgHTQEBaAhHQJ9EfZezD4x1fZQoaAZHQHFCVk1/DtRoB0vfaAhHQJ9E1Da4+bF1fZQoaAZHQHPKEXpGFzxoB0v6aAhHQJ9E1CeEqUh1fZQoaAZHQHDKEWEbo8poB0vzaAhHQJ9FRUNrj5t1fZQoaAZHQHFQy619fC1oB00GAWgIR0CfRURoRIz4dX2UKGgGR0BxPnaYeDFqaAdL+GgIR0CfRWLUCq6wdX2UKGgGR0BzxGz9jwx4aAdL12gIR0CfRY45tFa0dX2UKGgGR0ByNUbWEsasaAdL/2gIR0CfRZ/iHZbqdX2UKGgGR0Bw0KmtQsPKaAdL22gIR0CfRdMaCL/CdX2UKGgGR0BynPWEsasIaAdL3GgIR0CfRm482aUidX2UKGgGR0BzSt/PPcBVaAdL9mgIR0CfRyk7OmiydX2UKGgGR0Bx5ezgMtsfaAdNGQFoCEdAn0faij+Jg3V9lChoBkdAcS0WI42jwmgHS+JoCEdAn0pfVVghKXV9lChoBkdAcdnXRgJC0GgHS9FoCEdAn0p4TbnHN3V9lChoBkdAcUPhhpg1FmgHS9toCEdAn0s9TtLL6nV9lChoBkdAcNaPEbYK6WgHS99oCEdAn0vdjXnQpnV9lChoBkdAbhGgoPTXrmgHS/NoCEdAn0xRHf/FSHV9lChoBkdAco+SMcZLqWgHTRQBaAhHQJ9MxMK1G9Z1fZQoaAZHQHNPU4R28qZoB0v8aAhHQJ9NEfms/6h1fZQoaAZHQHLjonKGL1poB0vsaAhHQJ9NG0rsjVx1fZQoaAZHQHNrt9hJAdJoB0vvaAhHQJ9Nb6pHZsd1fZQoaAZHQHFTwfuCwr1oB0v+aAhHQJ9NnJ5mh/R1fZQoaAZHQHKCk4vN/vxoB00BAWgIR0CfTbK6nR9gdX2UKGgGR0ByIvLwF1SwaAdL3GgIR0CfTerVvuPWdX2UKGgGR0BxItsbedkKaAdL+2gIR0CfTiByCFsYdX2UKGgGR0BvJNR1oxpMaAdNCgFoCEdAn05S/fwZwXV9lChoBkdAcH/N/vv0AmgHS9loCEdAn06U5Qxes3V9lChoBkdAcanlF+d9UmgHS+5oCEdAn0/KRuCPIXV9lChoBkdActj6rvLHMmgHS9BoCEdAn1FWknCwbHV9lChoBkdAcoWBSk0rLGgHS+toCEdAn1F/wiJO33V9lChoBkdAcXBrGza9K2gHS/ZoCEdAn1G0D6nBL3V9lChoBkdAclRwgTyrgmgHS+RoCEdAn1KArlNlAnV9lChoBkdARVYGjbi6x2gHS79oCEdAn1KqLbYbsHV9lChoBkdAb9QsFMZgomgHS89oCEdAn1KsynDR+nV9lChoBkdAbxGzgMtsemgHS+JoCEdAn1LqSX+l03V9lChoBkdAcdLA93bEgmgHTQ4BaAhHQJ9TQGVzIWB1fZQoaAZHQHDlvM4cWCVoB0vkaAhHQJ9TThS9/SZ1fZQoaAZHQHBMIzrNW2hoB0v0aAhHQJ9TVRBNVR11fZQoaAZHQHLL0gSvkiloB00DAWgIR0CfU3iRGMGYdX2UKGgGR0ByG8OhCdBjaAdL92gIR0CfU71Iy0rtdX2UKGgGR0BxUKTzND+jaAdL6mgIR0CfU+dmQKa5dX2UKGgGR0BxMa1gH/tIaAdL/2gIR0CfVITTfBN3dX2UKGgGR0Bx2Sp6yB07aAdNGgFoCEdAn1THavicXnV9lChoBkdAcddLDAJswmgHTQgBaAhHQJ9VtxzaK1p1fZQoaAZHQHDXPP9kz41oB0vmaAhHQJ9WunQ6ZIB1fZQoaAZHQG3dETHsC1ZoB0vmaAhHQJ9W871ZkkN1fZQoaAZHQHCeGP1ct5FoB0v9aAhHQJ9XJiAlOXV1fZQoaAZHQHHwY3zcynFoB0vWaAhHQJ9XzIikftB1fZQoaAZHQHLF5Lh73PBoB0vqaAhHQJ9YD5GjKxN1fZQoaAZHQG35m2CuloFoB0vuaAhHQJ9YJywOe8R1fZQoaAZHQHEb/XoTwlVoB0vQaAhHQJ9YSjh1klN1fZQoaAZHQHCwr7XQMQVoB0vcaAhHQJ9YX3ueBhB1fZQoaAZHQHJZhEORT0hoB00BAWgIR0CfWHYP5HmSdX2UKGgGR0BulmxwAEMcaAdL52gIR0CfWKQKrq+rdX2UKGgGR0Bw6iloDgZTaAdL+WgIR0CfWPtv4ubrdX2UKGgGR0ByIyEmICU5aAdL+GgIR0CfWXkuHvc8dX2UKGgGR0ByQbdpItlJaAdNAAFoCEdAn1nTTa0x/XV9lChoBkdAb82BJ7LMcWgHS+hoCEdAn1otT5wfhnV9lChoBkdAb3NOJtSAH2gHS/RoCEdAn1o1QVKwp3V9lChoBkdAcbfbVBlcyGgHS8xoCEdAn1tdJFspHHV9lChoBkdAc0xq+JxecGgHTQABaAhHQJ9boEovzvt1fZQoaAZHQG+3tgBtDUpoB0vwaAhHQJ9cfaK1og51fZQoaAZHQG3sl5WzWwxoB0veaAhHQJ9c7hrFfiR1fZQoaAZHQHCUUrbxmTVoB0vcaAhHQJ9dPDhtLth1fZQoaAZHQHMbm2kSElFoB00EAWgIR0CfXUPxQSBcdX2UKGgGR0Btx1dLQHAzaAdL4mgIR0CfXUsu3+dcdX2UKGgGR0Bxkr3fyf+TaAdL12gIR0CfXWx46fapdX2UKGgGR0Bx5GJrLyMDaAdL1mgIR0CfXZVktmL+dX2UKGgGR0BwdlRUFSsKaAdL8mgIR0CfXde9zwMIdX2UKGgGR0Bx3Jmvnr6daAdL+WgIR0CfXhHZbpu/dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 513, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}