PampX commited on
Commit
be43a46
1 Parent(s): 2b7605d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 281.73 +/- 23.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b1469874430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b14698744c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b1469874550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b14698745e0>", "_build": "<function ActorCriticPolicy._build at 0x7b1469874670>", "forward": "<function ActorCriticPolicy.forward at 0x7b1469874700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1469874790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b1469874820>", "_predict": "<function ActorCriticPolicy._predict at 0x7b14698748b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1469874940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b14698749d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1469874a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1469813fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733227780911444898, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0wVT0vgJM/oEu0PTH3474q7qw9ImtRPQAAAAAAAAAA2n+4PeAMkT8dP3k+gVnVviYmPT59pZg9AAAAAAAAAABzDa29oYp/P6dfur02rP++6lUTvrDrkb0AAAAAAAAAAIDHTb0eqqk/RYoFv98wB7+Onws8tP0GvgAAAAAAAAAAABjDPB8Rmz/5TpE9UHvwvtw79Dwipgi8AAAAAAAAAAAzQww9n2L/u07tFT4L+zO+DAFuvaCJDb8AAIA/AACAP00kJj087VI9iKDUPbW3VL6i2rU9YNiQvQAAAAAAAAAAGho5PYVroLkaEzM0SbdEL0vYAzsfG6uzAACAPwAAgD/AvU4+YX4sPzZo5b4+B+2+ICI7vV7gXr4AAAAAAAAAAGaLWz02Swa8tYxBvSzBgb5WpFi8NiuCPgAAgD8AAIA/ZvlGPSnTK7xnRAw9SvuOPNWOmr32hGs9AACAPwAAgD8tnxw+1pcqP8kkkL46w+a+7zUJuoYdzrwAAAAAAAAAAIDjfj2QNr8/KvCePl3RO73Tpkg9fqPfPQAAAAAAAAAARvwcvkmdXj/m+Uu+ffYLv4OMdr6OxAC9AAAAAAAAAADzyzU+bZtOP2OhIj7H2sK+/MGEPrZPwT0AAAAAAAAAANrGXL7Tilo/wt9BvT2s7b7q2ny+Oq0GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCgP9cbBGiMAWyUS+uMAXSUR0CfKFAJb+tKdX2UKGgGR0BzLoHbAUL2aAdL3WgIR0CfKFux8lXzdX2UKGgGR0BxTdyxRl6JaAdL6WgIR0CfKIPNFBppdX2UKGgGR0Bxzv4EfT1DaAdL5GgIR0CfKTxFy7wsdX2UKGgGR0BwFpdVvMr3aAdNBAFoCEdAnyk41+AmRnV9lChoBkdAbrSTGo73f2gHS+poCEdAnymOLrHEM3V9lChoBkdAcxKv4/NZ/2gHS95oCEdAnymONDMNdHV9lChoBkdAcbJUtZmqYWgHS8doCEdAnyoj4Hoou3V9lChoBkdAbg80IkZ75WgHS+doCEdAnyovuogmq3V9lChoBkdAccWQXyiEhGgHS95oCEdAnypJ8F6iTXV9lChoBkdAcDiqxC6YmmgHS/doCEdAnyyvtx+8XnV9lChoBkdAcyDEfT1CgWgHS95oCEdAny1Q6uGKynV9lChoBkdAbpary1/lQ2gHS+toCEdAny1awD/2kHV9lChoBkdAcT59ZzPrwGgHS+xoCEdAny13Yg7o0XV9lChoBkdATZpCa7VawGgHS5xoCEdAny3dxAB1cXV9lChoBkdAc8V/lyR0VGgHTQ4BaAhHQJ8t4qEvkBF1fZQoaAZHQG8TLBsQ/X5oB00CAWgIR0CfLk/xDst1dX2UKGgGR0By+FMCcPOIaAdL2WgIR0CfLlvXK8tgdX2UKGgGR0BxZhJVbRnfaAdL+mgIR0CfLltzjm0WdX2UKGgGR0BwyS6nR9gGaAdNEwFoCEdAny5oddVvM3V9lChoBkdAc0n3PzFuN2gHTQkBaAhHQJ8ugA6uGK11fZQoaAZHQHKZI0Q9RrJoB0v/aAhHQJ8vDa/RE4N1fZQoaAZHQHAyNRR/EwZoB0vaaAhHQJ8vNUCJXQt1fZQoaAZHQHJU/bblA/toB00CAWgIR0CfL3Q/5ckddX2UKGgGR0Bzf/yYoiLVaAdL7GgIR0CfL63azu4PdX2UKGgGR0ByHqoqCpWFaAdNDQFoCEdAny+vNu+AVnV9lChoBkdAc2R8PnSv1WgHS/toCEdAn0M32EkB0nV9lChoBkdAcY9ywfQrtmgHS/BoCEdAn0OUsjFAFHV9lChoBkdAcvnpDeCTU2gHS/doCEdAn0PwJHAh0XV9lChoBkdAcWWLOiWVvGgHS9doCEdAn0RXktEofHV9lChoBkdAcn02UB4lhWgHTQEBaAhHQJ9EfZezD4x1fZQoaAZHQHFCVk1/DtRoB0vfaAhHQJ9E1Da4+bF1fZQoaAZHQHPKEXpGFzxoB0v6aAhHQJ9E1CeEqUh1fZQoaAZHQHDKEWEbo8poB0vzaAhHQJ9FRUNrj5t1fZQoaAZHQHFQy619fC1oB00GAWgIR0CfRURoRIz4dX2UKGgGR0BxPnaYeDFqaAdL+GgIR0CfRWLUCq6wdX2UKGgGR0BzxGz9jwx4aAdL12gIR0CfRY45tFa0dX2UKGgGR0ByNUbWEsasaAdL/2gIR0CfRZ/iHZbqdX2UKGgGR0Bw0KmtQsPKaAdL22gIR0CfRdMaCL/CdX2UKGgGR0BynPWEsasIaAdL3GgIR0CfRm482aUidX2UKGgGR0BzSt/PPcBVaAdL9mgIR0CfRyk7OmiydX2UKGgGR0Bx5ezgMtsfaAdNGQFoCEdAn0faij+Jg3V9lChoBkdAcS0WI42jwmgHS+JoCEdAn0pfVVghKXV9lChoBkdAcdnXRgJC0GgHS9FoCEdAn0p4TbnHN3V9lChoBkdAcUPhhpg1FmgHS9toCEdAn0s9TtLL6nV9lChoBkdAcNaPEbYK6WgHS99oCEdAn0vdjXnQpnV9lChoBkdAbhGgoPTXrmgHS/NoCEdAn0xRHf/FSHV9lChoBkdAco+SMcZLqWgHTRQBaAhHQJ9MxMK1G9Z1fZQoaAZHQHNPU4R28qZoB0v8aAhHQJ9NEfms/6h1fZQoaAZHQHLjonKGL1poB0vsaAhHQJ9NG0rsjVx1fZQoaAZHQHNrt9hJAdJoB0vvaAhHQJ9Nb6pHZsd1fZQoaAZHQHFTwfuCwr1oB0v+aAhHQJ9NnJ5mh/R1fZQoaAZHQHKCk4vN/vxoB00BAWgIR0CfTbK6nR9gdX2UKGgGR0ByIvLwF1SwaAdL3GgIR0CfTerVvuPWdX2UKGgGR0BxItsbedkKaAdL+2gIR0CfTiByCFsYdX2UKGgGR0BvJNR1oxpMaAdNCgFoCEdAn05S/fwZwXV9lChoBkdAcH/N/vv0AmgHS9loCEdAn06U5Qxes3V9lChoBkdAcanlF+d9UmgHS+5oCEdAn0/KRuCPIXV9lChoBkdActj6rvLHMmgHS9BoCEdAn1FWknCwbHV9lChoBkdAcoWBSk0rLGgHS+toCEdAn1F/wiJO33V9lChoBkdAcXBrGza9K2gHS/ZoCEdAn1G0D6nBL3V9lChoBkdAclRwgTyrgmgHS+RoCEdAn1KArlNlAnV9lChoBkdARVYGjbi6x2gHS79oCEdAn1KqLbYbsHV9lChoBkdAb9QsFMZgomgHS89oCEdAn1KsynDR+nV9lChoBkdAbxGzgMtsemgHS+JoCEdAn1LqSX+l03V9lChoBkdAcdLA93bEgmgHTQ4BaAhHQJ9TQGVzIWB1fZQoaAZHQHDlvM4cWCVoB0vkaAhHQJ9TThS9/SZ1fZQoaAZHQHBMIzrNW2hoB0v0aAhHQJ9TVRBNVR11fZQoaAZHQHLL0gSvkiloB00DAWgIR0CfU3iRGMGYdX2UKGgGR0ByG8OhCdBjaAdL92gIR0CfU71Iy0rtdX2UKGgGR0BxUKTzND+jaAdL6mgIR0CfU+dmQKa5dX2UKGgGR0BxMa1gH/tIaAdL/2gIR0CfVITTfBN3dX2UKGgGR0Bx2Sp6yB07aAdNGgFoCEdAn1THavicXnV9lChoBkdAcddLDAJswmgHTQgBaAhHQJ9VtxzaK1p1fZQoaAZHQHDXPP9kz41oB0vmaAhHQJ9WunQ6ZIB1fZQoaAZHQG3dETHsC1ZoB0vmaAhHQJ9W871ZkkN1fZQoaAZHQHCeGP1ct5FoB0v9aAhHQJ9XJiAlOXV1fZQoaAZHQHHwY3zcynFoB0vWaAhHQJ9XzIikftB1fZQoaAZHQHLF5Lh73PBoB0vqaAhHQJ9YD5GjKxN1fZQoaAZHQG35m2CuloFoB0vuaAhHQJ9YJywOe8R1fZQoaAZHQHEb/XoTwlVoB0vQaAhHQJ9YSjh1klN1fZQoaAZHQHCwr7XQMQVoB0vcaAhHQJ9YX3ueBhB1fZQoaAZHQHJZhEORT0hoB00BAWgIR0CfWHYP5HmSdX2UKGgGR0BulmxwAEMcaAdL52gIR0CfWKQKrq+rdX2UKGgGR0Bw6iloDgZTaAdL+WgIR0CfWPtv4ubrdX2UKGgGR0ByIyEmICU5aAdL+GgIR0CfWXkuHvc8dX2UKGgGR0ByQbdpItlJaAdNAAFoCEdAn1nTTa0x/XV9lChoBkdAb82BJ7LMcWgHS+hoCEdAn1otT5wfhnV9lChoBkdAb3NOJtSAH2gHS/RoCEdAn1o1QVKwp3V9lChoBkdAcbfbVBlcyGgHS8xoCEdAn1tdJFspHHV9lChoBkdAc0xq+JxecGgHTQABaAhHQJ9boEovzvt1fZQoaAZHQG+3tgBtDUpoB0vwaAhHQJ9cfaK1og51fZQoaAZHQG3sl5WzWwxoB0veaAhHQJ9c7hrFfiR1fZQoaAZHQHCUUrbxmTVoB0vcaAhHQJ9dPDhtLth1fZQoaAZHQHMbm2kSElFoB00EAWgIR0CfXUPxQSBcdX2UKGgGR0Btx1dLQHAzaAdL4mgIR0CfXUsu3+dcdX2UKGgGR0Bxkr3fyf+TaAdL12gIR0CfXWx46fapdX2UKGgGR0Bx5GJrLyMDaAdL1mgIR0CfXZVktmL+dX2UKGgGR0BwdlRUFSsKaAdL8mgIR0CfXde9zwMIdX2UKGgGR0Bx3Jmvnr6daAdL+WgIR0CfXhHZbpu/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 513, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa46e84cf8be0b5a381f82dc3e31dbd54ed6c87a76aaf67bec2e17c2c11fa0a7
3
+ size 147916
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b1469874430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b14698744c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b1469874550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b14698745e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b1469874670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b1469874700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b1469874790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b1469874820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b14698748b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b1469874940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b14698749d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b1469874a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b1469813fc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1733227780911444898,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0wVT0vgJM/oEu0PTH3474q7qw9ImtRPQAAAAAAAAAA2n+4PeAMkT8dP3k+gVnVviYmPT59pZg9AAAAAAAAAABzDa29oYp/P6dfur02rP++6lUTvrDrkb0AAAAAAAAAAIDHTb0eqqk/RYoFv98wB7+Onws8tP0GvgAAAAAAAAAAABjDPB8Rmz/5TpE9UHvwvtw79Dwipgi8AAAAAAAAAAAzQww9n2L/u07tFT4L+zO+DAFuvaCJDb8AAIA/AACAP00kJj087VI9iKDUPbW3VL6i2rU9YNiQvQAAAAAAAAAAGho5PYVroLkaEzM0SbdEL0vYAzsfG6uzAACAPwAAgD/AvU4+YX4sPzZo5b4+B+2+ICI7vV7gXr4AAAAAAAAAAGaLWz02Swa8tYxBvSzBgb5WpFi8NiuCPgAAgD8AAIA/ZvlGPSnTK7xnRAw9SvuOPNWOmr32hGs9AACAPwAAgD8tnxw+1pcqP8kkkL46w+a+7zUJuoYdzrwAAAAAAAAAAIDjfj2QNr8/KvCePl3RO73Tpkg9fqPfPQAAAAAAAAAARvwcvkmdXj/m+Uu+ffYLv4OMdr6OxAC9AAAAAAAAAADzyzU+bZtOP2OhIj7H2sK+/MGEPrZPwT0AAAAAAAAAANrGXL7Tilo/wt9BvT2s7b7q2ny+Oq0GPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCgP9cbBGiMAWyUS+uMAXSUR0CfKFAJb+tKdX2UKGgGR0BzLoHbAUL2aAdL3WgIR0CfKFux8lXzdX2UKGgGR0BxTdyxRl6JaAdL6WgIR0CfKIPNFBppdX2UKGgGR0Bxzv4EfT1DaAdL5GgIR0CfKTxFy7wsdX2UKGgGR0BwFpdVvMr3aAdNBAFoCEdAnyk41+AmRnV9lChoBkdAbrSTGo73f2gHS+poCEdAnymOLrHEM3V9lChoBkdAcxKv4/NZ/2gHS95oCEdAnymONDMNdHV9lChoBkdAcbJUtZmqYWgHS8doCEdAnyoj4Hoou3V9lChoBkdAbg80IkZ75WgHS+doCEdAnyovuogmq3V9lChoBkdAccWQXyiEhGgHS95oCEdAnypJ8F6iTXV9lChoBkdAcDiqxC6YmmgHS/doCEdAnyyvtx+8XnV9lChoBkdAcyDEfT1CgWgHS95oCEdAny1Q6uGKynV9lChoBkdAbpary1/lQ2gHS+toCEdAny1awD/2kHV9lChoBkdAcT59ZzPrwGgHS+xoCEdAny13Yg7o0XV9lChoBkdATZpCa7VawGgHS5xoCEdAny3dxAB1cXV9lChoBkdAc8V/lyR0VGgHTQ4BaAhHQJ8t4qEvkBF1fZQoaAZHQG8TLBsQ/X5oB00CAWgIR0CfLk/xDst1dX2UKGgGR0By+FMCcPOIaAdL2WgIR0CfLlvXK8tgdX2UKGgGR0BxZhJVbRnfaAdL+mgIR0CfLltzjm0WdX2UKGgGR0BwyS6nR9gGaAdNEwFoCEdAny5oddVvM3V9lChoBkdAc0n3PzFuN2gHTQkBaAhHQJ8ugA6uGK11fZQoaAZHQHKZI0Q9RrJoB0v/aAhHQJ8vDa/RE4N1fZQoaAZHQHAyNRR/EwZoB0vaaAhHQJ8vNUCJXQt1fZQoaAZHQHJU/bblA/toB00CAWgIR0CfL3Q/5ckddX2UKGgGR0Bzf/yYoiLVaAdL7GgIR0CfL63azu4PdX2UKGgGR0ByHqoqCpWFaAdNDQFoCEdAny+vNu+AVnV9lChoBkdAc2R8PnSv1WgHS/toCEdAn0M32EkB0nV9lChoBkdAcY9ywfQrtmgHS/BoCEdAn0OUsjFAFHV9lChoBkdAcvnpDeCTU2gHS/doCEdAn0PwJHAh0XV9lChoBkdAcWWLOiWVvGgHS9doCEdAn0RXktEofHV9lChoBkdAcn02UB4lhWgHTQEBaAhHQJ9EfZezD4x1fZQoaAZHQHFCVk1/DtRoB0vfaAhHQJ9E1Da4+bF1fZQoaAZHQHPKEXpGFzxoB0v6aAhHQJ9E1CeEqUh1fZQoaAZHQHDKEWEbo8poB0vzaAhHQJ9FRUNrj5t1fZQoaAZHQHFQy619fC1oB00GAWgIR0CfRURoRIz4dX2UKGgGR0BxPnaYeDFqaAdL+GgIR0CfRWLUCq6wdX2UKGgGR0BzxGz9jwx4aAdL12gIR0CfRY45tFa0dX2UKGgGR0ByNUbWEsasaAdL/2gIR0CfRZ/iHZbqdX2UKGgGR0Bw0KmtQsPKaAdL22gIR0CfRdMaCL/CdX2UKGgGR0BynPWEsasIaAdL3GgIR0CfRm482aUidX2UKGgGR0BzSt/PPcBVaAdL9mgIR0CfRyk7OmiydX2UKGgGR0Bx5ezgMtsfaAdNGQFoCEdAn0faij+Jg3V9lChoBkdAcS0WI42jwmgHS+JoCEdAn0pfVVghKXV9lChoBkdAcdnXRgJC0GgHS9FoCEdAn0p4TbnHN3V9lChoBkdAcUPhhpg1FmgHS9toCEdAn0s9TtLL6nV9lChoBkdAcNaPEbYK6WgHS99oCEdAn0vdjXnQpnV9lChoBkdAbhGgoPTXrmgHS/NoCEdAn0xRHf/FSHV9lChoBkdAco+SMcZLqWgHTRQBaAhHQJ9MxMK1G9Z1fZQoaAZHQHNPU4R28qZoB0v8aAhHQJ9NEfms/6h1fZQoaAZHQHLjonKGL1poB0vsaAhHQJ9NG0rsjVx1fZQoaAZHQHNrt9hJAdJoB0vvaAhHQJ9Nb6pHZsd1fZQoaAZHQHFTwfuCwr1oB0v+aAhHQJ9NnJ5mh/R1fZQoaAZHQHKCk4vN/vxoB00BAWgIR0CfTbK6nR9gdX2UKGgGR0ByIvLwF1SwaAdL3GgIR0CfTerVvuPWdX2UKGgGR0BxItsbedkKaAdL+2gIR0CfTiByCFsYdX2UKGgGR0BvJNR1oxpMaAdNCgFoCEdAn05S/fwZwXV9lChoBkdAcH/N/vv0AmgHS9loCEdAn06U5Qxes3V9lChoBkdAcanlF+d9UmgHS+5oCEdAn0/KRuCPIXV9lChoBkdActj6rvLHMmgHS9BoCEdAn1FWknCwbHV9lChoBkdAcoWBSk0rLGgHS+toCEdAn1F/wiJO33V9lChoBkdAcXBrGza9K2gHS/ZoCEdAn1G0D6nBL3V9lChoBkdAclRwgTyrgmgHS+RoCEdAn1KArlNlAnV9lChoBkdARVYGjbi6x2gHS79oCEdAn1KqLbYbsHV9lChoBkdAb9QsFMZgomgHS89oCEdAn1KsynDR+nV9lChoBkdAbxGzgMtsemgHS+JoCEdAn1LqSX+l03V9lChoBkdAcdLA93bEgmgHTQ4BaAhHQJ9TQGVzIWB1fZQoaAZHQHDlvM4cWCVoB0vkaAhHQJ9TThS9/SZ1fZQoaAZHQHBMIzrNW2hoB0v0aAhHQJ9TVRBNVR11fZQoaAZHQHLL0gSvkiloB00DAWgIR0CfU3iRGMGYdX2UKGgGR0ByG8OhCdBjaAdL92gIR0CfU71Iy0rtdX2UKGgGR0BxUKTzND+jaAdL6mgIR0CfU+dmQKa5dX2UKGgGR0BxMa1gH/tIaAdL/2gIR0CfVITTfBN3dX2UKGgGR0Bx2Sp6yB07aAdNGgFoCEdAn1THavicXnV9lChoBkdAcddLDAJswmgHTQgBaAhHQJ9VtxzaK1p1fZQoaAZHQHDXPP9kz41oB0vmaAhHQJ9WunQ6ZIB1fZQoaAZHQG3dETHsC1ZoB0vmaAhHQJ9W871ZkkN1fZQoaAZHQHCeGP1ct5FoB0v9aAhHQJ9XJiAlOXV1fZQoaAZHQHHwY3zcynFoB0vWaAhHQJ9XzIikftB1fZQoaAZHQHLF5Lh73PBoB0vqaAhHQJ9YD5GjKxN1fZQoaAZHQG35m2CuloFoB0vuaAhHQJ9YJywOe8R1fZQoaAZHQHEb/XoTwlVoB0vQaAhHQJ9YSjh1klN1fZQoaAZHQHCwr7XQMQVoB0vcaAhHQJ9YX3ueBhB1fZQoaAZHQHJZhEORT0hoB00BAWgIR0CfWHYP5HmSdX2UKGgGR0BulmxwAEMcaAdL52gIR0CfWKQKrq+rdX2UKGgGR0Bw6iloDgZTaAdL+WgIR0CfWPtv4ubrdX2UKGgGR0ByIyEmICU5aAdL+GgIR0CfWXkuHvc8dX2UKGgGR0ByQbdpItlJaAdNAAFoCEdAn1nTTa0x/XV9lChoBkdAb82BJ7LMcWgHS+hoCEdAn1otT5wfhnV9lChoBkdAb3NOJtSAH2gHS/RoCEdAn1o1QVKwp3V9lChoBkdAcbfbVBlcyGgHS8xoCEdAn1tdJFspHHV9lChoBkdAc0xq+JxecGgHTQABaAhHQJ9boEovzvt1fZQoaAZHQG+3tgBtDUpoB0vwaAhHQJ9cfaK1og51fZQoaAZHQG3sl5WzWwxoB0veaAhHQJ9c7hrFfiR1fZQoaAZHQHCUUrbxmTVoB0vcaAhHQJ9dPDhtLth1fZQoaAZHQHMbm2kSElFoB00EAWgIR0CfXUPxQSBcdX2UKGgGR0Btx1dLQHAzaAdL4mgIR0CfXUsu3+dcdX2UKGgGR0Bxkr3fyf+TaAdL12gIR0CfXWx46fapdX2UKGgGR0Bx5GJrLyMDaAdL1mgIR0CfXZVktmL+dX2UKGgGR0BwdlRUFSsKaAdL8mgIR0CfXde9zwMIdX2UKGgGR0Bx3Jmvnr6daAdL+WgIR0CfXhHZbpu/dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 513,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b6ccf9291d54120b0a63e942e27ed6b25508a7795ae270716134887ef2037fe
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b16b117d84d60f3b39381d64602dfeca0ffd21e6d954c84b705284750bf19cdf
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 281.7262729, "std_reward": 23.308266607274895, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-03T12:42:39.636383"}