""" Copied from MMAction2 https://github.com/open-mmlab/mmaction2/blob/master/mmaction/core/evaluation/eval_detection.py """ import json import numpy as np from sklearn.metrics import precision_recall_curve def load_jsonl(filename): with open(filename, "r") as f: return [json.loads(l.strip("\n")) for l in f.readlines()] def compute_temporal_iou_batch_paired(pred_windows, gt_windows): """ compute intersection-over-union along temporal axis for each pair of windows in pred_windows and gt_windows. Args: pred_windows: np.ndarray, (N, 2), [st (float), ed (float)] * N gt_windows: np.ndarray, (N, 2), [st (float), ed (float)] * N Returns: iou (float): np.ndarray, (N, ) References: for np.divide with zeros, see https://stackoverflow.com/a/37977222 """ intersection = np.maximum( 0, np.minimum(pred_windows[:, 1], gt_windows[:, 1]) - np.maximum(pred_windows[:, 0], gt_windows[:, 0]) ) union = np.maximum(pred_windows[:, 1], gt_windows[:, 1]) \ - np.minimum(pred_windows[:, 0], gt_windows[:, 0]) # not the correct union though return np.divide(intersection, union, out=np.zeros_like(intersection), where=union != 0) def compute_temporal_iou_batch_cross(spans1, spans2): """ Args: spans1: (N, 2) np.ndarray, each row defines a span [st, ed] spans2: (M, 2) np.ndarray, ... Returns: iou: (N, M) np.ndarray union: (N, M) np.ndarray >>> spans1 = np.array([[0, 0.2, 0.9], [0.5, 1.0, 0.2]]) >>> spans2 = np.array([[0, 0.3], [0., 1.0]]) >>> compute_temporal_iou_batch_cross(spans1, spans2) (tensor([[0.6667, 0.2000], [0.0000, 0.5000]]), tensor([[0.3000, 1.0000], [0.8000, 1.0000]])) """ areas1 = spans1[:, 1] - spans1[:, 0] # (N, ) areas2 = spans2[:, 1] - spans2[:, 0] # (M, ) left = np.maximum(spans1[:, None, 0], spans2[None, :, 0]) # (N, M) right = np.minimum(spans1[:, None, 1], spans2[None, :, 1]) # (N, M) inter = np.clip(right - left, 0, None) # (N, M) union = areas1[:, None] + areas2[None, :] - inter # (N, M) iou = inter / union return iou, union def interpolated_precision_recall(precision, recall): """Interpolated AP - VOCdevkit from VOC 2011. Args: precision (np.ndarray): The precision of different thresholds. recall (np.ndarray): The recall of different thresholds. Returns: float: Average precision score. """ mprecision = np.hstack([[0], precision, [0]]) mrecall = np.hstack([[0], recall, [1]]) for i in range(len(mprecision) - 1)[::-1]: mprecision[i] = max(mprecision[i], mprecision[i + 1]) idx = np.where(mrecall[1::] != mrecall[0:-1])[0] + 1 ap = np.sum((mrecall[idx] - mrecall[idx - 1]) * mprecision[idx]) return ap def compute_average_precision_detection(ground_truth, prediction, tiou_thresholds=np.linspace( 0.5, 0.95, 10)): """Compute average precision (detection task) between ground truth and predictions data frames. If multiple predictions occurs for the same predicted segment, only the one with highest score is matches as true positive. This code is greatly inspired by Pascal VOC devkit. Args: ground_truth (list[dict]): List containing the ground truth instances (dictionaries). Required keys are 'video-id', 't-start' and 't-end'. prediction (list[dict]): List containing the prediction instances (dictionaries). Required keys are: 'video-id', 't-start', 't-end' and 'score'. tiou_thresholds (np.ndarray): A 1darray indicates the temporal intersection over union threshold, which is optional. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: Float: ap, Average precision score. """ num_thresholds = len(tiou_thresholds) num_gts = len(ground_truth) num_preds = len(prediction) ap = np.zeros(num_thresholds) if len(prediction) == 0: return ap num_positive = float(num_gts) lock_gt = np.ones((num_thresholds, num_gts)) * -1 # Sort predictions by decreasing score order. prediction.sort(key=lambda x: -x['score']) # Initialize true positive and false positive vectors. tp = np.zeros((num_thresholds, num_preds)) fp = np.zeros((num_thresholds, num_preds)) # Adaptation to query faster ground_truth_by_videoid = {} for i, item in enumerate(ground_truth): item['index'] = i ground_truth_by_videoid.setdefault(item['video-id'], []).append(item) # Assigning true positive to truly grount truth instances. for idx, pred in enumerate(prediction): if pred['video-id'] in ground_truth_by_videoid: gts = ground_truth_by_videoid[pred['video-id']] else: fp[:, idx] = 1 continue _pred = np.array([[pred['t-start'], pred['t-end']], ]) _gt = np.array([[gt['t-start'], gt['t-end']] for gt in gts]) tiou_arr = compute_temporal_iou_batch_cross(_pred, _gt)[0] tiou_arr = tiou_arr.reshape(-1) # We would like to retrieve the predictions with highest tiou score. tiou_sorted_idx = tiou_arr.argsort()[::-1] for t_idx, tiou_threshold in enumerate(tiou_thresholds): for j_idx in tiou_sorted_idx: if tiou_arr[j_idx] < tiou_threshold: fp[t_idx, idx] = 1 break if lock_gt[t_idx, gts[j_idx]['index']] >= 0: continue # Assign as true positive after the filters above. tp[t_idx, idx] = 1 lock_gt[t_idx, gts[j_idx]['index']] = idx break if fp[t_idx, idx] == 0 and tp[t_idx, idx] == 0: fp[t_idx, idx] = 1 tp_cumsum = np.cumsum(tp, axis=1).astype(float) fp_cumsum = np.cumsum(fp, axis=1).astype(float) recall_cumsum = tp_cumsum / num_positive precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum) for t_idx in range(len(tiou_thresholds)): ap[t_idx] = interpolated_precision_recall(precision_cumsum[t_idx, :], recall_cumsum[t_idx, :]) return ap def get_ap(y_true, y_predict, interpolate=True, point_11=False): """ Average precision in different formats: (non-) interpolated and/or 11-point approximated point_11=True and interpolate=True corresponds to the 11-point interpolated AP used in the PASCAL VOC challenge up to the 2008 edition and has been verfied against the vlfeat implementation The exact average precision (interpolate=False, point_11=False) corresponds to the one of vl_feat :param y_true: list/ numpy vector of true labels in {0,1} for each element :param y_predict: predicted score for each element :param interpolate: Use interpolation? :param point_11: Use 11-point approximation to average precision? :return: average precision ref: https://github.com/gyglim/video2gif_dataset/blob/master/v2g_evaluation/__init__.py """ # Check inputs assert len(y_true) == len(y_predict), "Prediction and ground truth need to be of the same length" if len(set(y_true)) == 1: if y_true[0] == 0: return 0 # True labels are all zeros # raise ValueError('True labels cannot all be zero') else: return 1 else: assert sorted(set(y_true)) == [0, 1], "Ground truth can only contain elements {0,1}" # Compute precision and recall precision, recall, _ = precision_recall_curve(y_true, y_predict) recall = recall.astype(np.float32) if interpolate: # Compute the interpolated precision for i in range(1, len(precision)): precision[i] = max(precision[i - 1], precision[i]) if point_11: # Compute the 11-point approximated AP precision_11 = [precision[np.where(recall >= t)[0][-1]] for t in np.arange(0, 1.01, 0.1)] return np.mean(precision_11) else: # Compute the AP using precision at every additionally recalled sample indices = np.where(np.diff(recall)) return np.mean(precision[indices])