VideoChat-TPO / third_party /cgdetr /cg_detr /start_end_dataset.py
ynhe
init
16dc4f2
raw
history blame
17 kB
import torch
from torch.utils.data import Dataset
import numpy as np
from tqdm import tqdm
import random
import logging
from os.path import join, exists
from third_party.cgdetr.utils.basic_utils import load_jsonl, l2_normalize_np_array
from third_party.cgdetr.utils.tensor_utils import pad_sequences_1d
from third_party.cgdetr.cg_detr.span_utils import span_xx_to_cxw
# from torchtext import vocab
import torch.nn as nn
logger = logging.getLogger(__name__)
class StartEndDataset(Dataset):
Q_FEAT_TYPES = ["pooler_output", "last_hidden_state"]
"""One line in data loaded from data_path."
{
"qid": 7803,
"query": "Man in gray top walks from outside to inside.",
"duration": 150,
"vid": "RoripwjYFp8_360.0_510.0",
"relevant_clip_ids": [13, 14, 15, 16, 17],
"relevant_windows": [[26, 36]]
}
"""
def __init__(self, dset_name, data_path, v_feat_dirs, q_feat_dir,
q_feat_type="last_hidden_state",
max_q_l=32, max_v_l=75, data_ratio=1.0, ctx_mode="video",
normalize_v=True, normalize_t=True, load_labels=True,
clip_len=2, max_windows=5, span_loss_type="l1", txt_drop_ratio=0,
dset_domain=None):
self.dset_name = dset_name
self.data_path = data_path
self.data_ratio = data_ratio
self.v_feat_dirs = v_feat_dirs \
if isinstance(v_feat_dirs, list) else [v_feat_dirs]
self.q_feat_dir = q_feat_dir
self.q_feat_type = q_feat_type
if max_v_l == -1:
max_v_l = 100000000
if max_q_l == -1:
max_q_l = 100
self.max_q_l = max_q_l
self.max_v_l = max_v_l
self.ctx_mode = ctx_mode
self.use_tef = "tef" in ctx_mode
self.use_video = "video" in ctx_mode
self.normalize_t = normalize_t
self.normalize_v = normalize_v
self.load_labels = load_labels
self.clip_len = clip_len
self.max_windows = max_windows # maximum number of windows to use as labels
self.span_loss_type = span_loss_type
self.txt_drop_ratio = txt_drop_ratio
if "val" in data_path or "test" in data_path:
assert txt_drop_ratio == 0
if self.dset_name == 'hl':
self.max_q_l = 32
self.max_v_l = 75
self.clip_len = 2
# checks
assert q_feat_type in self.Q_FEAT_TYPES
# data
self.data = self.load_data()
self.use_glove = False
self.use_glove = 'vgg' in self.v_feat_dirs[0]
# if self.dset_name == 'charadesSTA' and self.use_glove:
# self.vocab = vocab.pretrained_aliases['glove.6B.300d']()
# self.vocab.itos.extend(['<unk>'])
# self.vocab.stoi['<unk>'] = self.vocab.vectors.shape[0]
# self.vocab.vectors = torch.cat(
# (self.vocab.vectors, torch.zeros(1, self.vocab.dim)), dim=0)
# self.embedding = nn.Embedding.from_pretrained(self.vocab.vectors)
def load_data(self):
datalist = load_jsonl(self.data_path)
if self.data_ratio != 1:
n_examples = int(len(datalist) * self.data_ratio)
datalist = datalist[:n_examples]
logger.info("Using {}% of the data: {} examples"
.format(self.data_ratio * 100, n_examples))
return datalist
def __len__(self):
return len(self.data)
def __getitem__(self, index):
meta = self.data[index]
model_inputs = dict()
if self.use_glove: # False
model_inputs["query_feat"] = self.get_query(meta["query"])
else:
model_inputs["query_feat"] = self._get_query_feat_by_qid(meta["qid"]) # (Dq, ) or (Lq, Dq) # [16, 4096]
if self.use_video : # True
model_inputs["video_feat"] = self._get_video_feat_by_vid(meta["vid"]) # (Lv, Dv)
ctx_l = len(model_inputs["video_feat"])
else:
ctx_l = self.max_v_l
if self.use_tef:
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
tef_ed = tef_st + 1.0 / ctx_l
tef = torch.stack([tef_st, tef_ed], dim=1) # (Lv, 2)
if self.use_video :
model_inputs["video_feat"] = torch.cat(
[model_inputs["video_feat"], tef], dim=1) # (Lv, Dv+2)
else:
model_inputs["video_feat"] = tef
if "relevant_windows" in meta: ## For Qvhighlights test set
model_inputs["span_labels"] = self.get_span_labels(meta["relevant_windows"], ctx_l) # (#windows, 2)
if self.dset_name in ['charadesSTA', 'tacos', 'activitynet']: ## charades, tacos, nlq
model_inputs["saliency_pos_labels"], model_inputs["saliency_neg_labels"], model_inputs["saliency_all_labels"] = \
self.get_saliency_labels_sub_as_query(meta["relevant_windows"][0], meta["duration"], ctx_l) # only one gt
elif "subs_train" not in self.data_path:
model_inputs["saliency_pos_labels"], model_inputs["saliency_neg_labels"], model_inputs["saliency_all_labels"] = \
self.get_saliency_labels_all(meta["relevant_clip_ids"], meta["saliency_scores"], ctx_l)
else:
model_inputs["saliency_pos_labels"], model_inputs["saliency_neg_labels"], model_inputs["saliency_all_labels"] = \
self.get_saliency_labels_sub_as_query(meta["relevant_windows"][0], meta["duration"], ctx_l) # only one gt
if 'qvhighlight' or 'qvhl' in self.data_path:
model_inputs["relevant_clip_ids"] = meta["relevant_clip_ids"]
model_inputs["vid"] = meta["vid"]
model_inputs["qid"] = meta["qid"]
return dict(meta=meta, model_inputs=model_inputs)
# def get_query(self, query):
# word_inds = torch.LongTensor(
# [self.vocab.stoi.get(w.lower(), 400000) for w in query.split()])
# return self.embedding(word_inds)
def get_query(self, query):
print("ERROR")
exit()
def get_saliency_labels_sub_as_query(self, gt_window, duration, ctx_l, max_n=2):
clip_len = duration / ctx_l
gt_st = int(gt_window[0] / clip_len)
gt_ed = max(0, min(int(gt_window[1] / clip_len), ctx_l) - 1)
if gt_st > gt_ed:
gt_st = gt_ed
if gt_st != gt_ed:
pos_clip_indices = random.sample(range(gt_st, gt_ed + 1), k=max_n) # 在GT frame idx中随机选两个
else:
if self.dset_name == 'nlq':
pos_clip_indices = [gt_st] * 2
else:
pos_clip_indices = [gt_st, gt_st]
neg_pool = list(range(0, gt_st)) + list(range(gt_ed+1, ctx_l)) # 非GT的frame idx
try:
neg_clip_indices = random.sample(neg_pool, k=max_n) # 在非GT frame idx中随机选两个
except:
neg_clip_indices = pos_clip_indices
# For charades_sta
score_array = np.zeros(ctx_l)
score_array[gt_st:gt_ed + 1] = 1
return pos_clip_indices, neg_clip_indices, score_array
def get_saliency_labels(self, rel_clip_ids, scores, ctx_l, max_n=1, add_easy_negative=True):
"""Sum the scores from the three annotations, then take the two clips with the
maximum scores as positive, and two with the minimum scores as negative.
Args:
rel_clip_ids: list(int), list of relevant clip ids
scores: list([anno1_score, anno2_score, anno3_score]),
ctx_l: int
max_n: int, #clips to use as positive and negative, for easy and hard negative, respectively.
add_easy_negative: bool, if True, sample eay negative outside the relevant_clip_ids.
"""
# indices inside rel_clip_ids
scores = np.array(scores) # (#rel_clips, 3)
agg_scores = np.sum(scores, 1) # (#rel_clips, )
sort_indices = np.argsort(agg_scores) # increasing
# indices in the whole video
# the min(_, ctx_l-1) here is incorrect, but should not cause
# much troubles since this should be rarely used.
hard_pos_clip_indices = [min(rel_clip_ids[idx], ctx_l-1) for idx in sort_indices[-max_n:]]
hard_neg_clip_indices = [min(rel_clip_ids[idx], ctx_l-1) for idx in sort_indices[:max_n]]
easy_pos_clip_indices = []
easy_neg_clip_indices = []
if add_easy_negative:
easy_neg_pool = list(set(range(ctx_l)) - set(rel_clip_ids))
if len(easy_neg_pool) >= max_n:
easy_pos_clip_indices = random.sample(rel_clip_ids, k=max_n)
easy_neg_clip_indices = random.sample(easy_neg_pool, k=max_n)
else: # copy the hard ones
easy_pos_clip_indices = hard_pos_clip_indices
easy_neg_clip_indices = hard_neg_clip_indices
pos_clip_indices = hard_pos_clip_indices + easy_pos_clip_indices
neg_clip_indices = hard_neg_clip_indices + easy_neg_clip_indices
return pos_clip_indices, neg_clip_indices
def get_saliency_labels_all(self, rel_clip_ids, scores, ctx_l, max_n=1, add_easy_negative=True):
"""Sum the scores from the three annotations, then take the two clips with the
maximum scores as positive, and two with the minimum scores as negative.
Args:
rel_clip_ids: list(int), list of relevant clip ids
scores: list([anno1_score, anno2_score, anno3_score]),
ctx_l: int
max_n: int, #clips to use as positive and negative, for easy and hard negative, respectively.
add_easy_negative: bool, if True, sample eay negative outside the relevant_clip_ids.
"""
# indices inside rel_clip_ids
scores = np.array(scores) # (#rel_clips, 3)
agg_scores = np.sum(scores, 1) # (#rel_clips, )
sort_indices = np.argsort(agg_scores) # increasing
# score_array = [min(agg_scores[idx], ctx_l-1) for idx in range(ctx_l)]
score_array = np.zeros(ctx_l)
max_len=ctx_l
for idx in range(len(rel_clip_ids)):
if rel_clip_ids[idx] >= ctx_l:
max_len=max(max_len,rel_clip_ids[idx])
# score_array_new = np.zeros(ctx_l + 1)
score_array_new = np.zeros(max_len+1)
# score_array_new[:ctx_l] = score_array
score_array_new[:len(score_array)] = score_array
score_array = score_array_new
score_array[rel_clip_ids[idx]] = agg_scores[idx]
# indices in the whole video
# the min(_, ctx_l-1) here is incorrect, but should not cause
# much troubles since this should be rarely used.
hard_pos_clip_indices = [min(rel_clip_ids[idx], ctx_l-1) for idx in sort_indices[-max_n:]]
hard_neg_clip_indices = [min(rel_clip_ids[idx], ctx_l-1) for idx in sort_indices[:max_n]]
easy_pos_clip_indices = []
easy_neg_clip_indices = []
if add_easy_negative:
easy_neg_pool = list(set(range(ctx_l)) - set(rel_clip_ids))
if len(easy_neg_pool) >= max_n:
easy_pos_clip_indices = random.sample(rel_clip_ids, k=max_n)
easy_neg_clip_indices = random.sample(easy_neg_pool, k=max_n)
else: # copy the hard ones
easy_pos_clip_indices = hard_pos_clip_indices
easy_neg_clip_indices = hard_neg_clip_indices
pos_clip_indices = hard_pos_clip_indices + easy_pos_clip_indices
neg_clip_indices = hard_neg_clip_indices + easy_neg_clip_indices
return pos_clip_indices, neg_clip_indices, score_array
def get_span_labels(self, windows, ctx_l):
"""
windows: list([st, ed]) in seconds. E.g. [[26, 36]], corresponding st_ed clip_indices [[13, 17]] (inclusive)
Note a maximum of `self.max_windows` windows are used.
returns Tensor of shape (#windows, 2), each row is [center, width] normalized by video length
"""
if len(windows) > self.max_windows:
random.shuffle(windows)
windows = windows[:self.max_windows]
if self.span_loss_type == "l1":
windows = torch.Tensor(windows) / (ctx_l * self.clip_len) # normalized windows in xx
windows = span_xx_to_cxw(windows) # normalized windows in cxw
elif self.span_loss_type == "ce":
windows = torch.Tensor([
[int(w[0] / self.clip_len), min(int(w[1] / self.clip_len), ctx_l) - 1]
for w in windows]).long() # inclusive
else:
raise NotImplementedError
return windows
def _get_query_feat_by_qid(self, qid):
# QVhighlight dataset
q_feat_path = join(self.q_feat_dir, f"qid{qid}.pt")
# q_feat = np.load(q_feat_path)[self.q_feat_type].astype(np.float32)
q_feat = torch.load(q_feat_path).numpy().astype(np.float32)
if self.q_feat_type == "last_hidden_state":
q_feat = q_feat[:self.max_q_l]
if self.normalize_t:
q_feat = l2_normalize_np_array(q_feat)
if self.txt_drop_ratio > 0:
q_feat = self.random_drop_rows(q_feat)
return torch.from_numpy(q_feat) # (D, ) or (Lq, D)
def random_drop_rows(self, embeddings):
"""randomly mask num_drop rows in embeddings to be zero.
Args:
embeddings: np.ndarray (L, D)
"""
num_drop_rows = round(len(embeddings) * self.txt_drop_ratio)
if num_drop_rows > 0:
row_indices = np.random.choice(
len(embeddings), size=num_drop_rows, replace=False)
embeddings[row_indices] = 0
return embeddings
def _get_video_feat_by_vid(self, vid):
v_feat_list = []
for _feat_dir in self.v_feat_dirs:
try:
_feat_path = join(_feat_dir, f"{vid}.pt")
_feat = torch.load(_feat_path)["features"][:self.max_v_l].numpy().astype(np.float32)
except:
_feat_path = join(_feat_dir, f"{vid}.pt")
_feat = torch.load(_feat_path)[:self.max_v_l].numpy().astype(np.float32)
if self.normalize_v:
_feat = l2_normalize_np_array(_feat)
v_feat_list.append(_feat)
# some features are slightly longer than the others
min_len = min([len(e) for e in v_feat_list])
v_feat_list = [e[:min_len] for e in v_feat_list]
v_feat = np.concatenate(v_feat_list, axis=1) # (vlen=34, 768)
return torch.from_numpy(v_feat) # (Lv, D)
def start_end_collate(batch):
batch_meta = [e["meta"] for e in batch] # seems no need to collate ?
model_inputs_keys = batch[0]["model_inputs"].keys()
batched_data = dict()
for k in model_inputs_keys:
if k == "span_labels":
batched_data[k] = [dict(spans=e["model_inputs"]["span_labels"]) for e in batch]
continue
if k in ["saliency_pos_labels", "saliency_neg_labels"]:
batched_data[k] = torch.LongTensor([e["model_inputs"][k] for e in batch])
continue
if k == "saliency_all_labels":
pad_data, mask_data = pad_sequences_1d([e["model_inputs"][k] for e in batch], dtype=np.float32, fixed_length=None)
batched_data[k] = torch.tensor(pad_data, dtype=torch.float32)
continue
if k == 'qid':
batched_data[k] = [e["model_inputs"][k] for e in batch]
continue
if k == 'vid':
batched_data[k] = [e["model_inputs"][k] for e in batch]
continue
batched_data[k] = pad_sequences_1d(
[e["model_inputs"][k] for e in batch], dtype=torch.float32, fixed_length=None)
return batch_meta, batched_data
def prepare_batch_inputs(batched_model_inputs):
model_inputs = dict(
src_txt=batched_model_inputs["query_feat"][0],
src_txt_mask=batched_model_inputs["query_feat"][1],
src_vid=batched_model_inputs["video_feat"][0],
src_vid_mask=batched_model_inputs["video_feat"][1],
vid=batched_model_inputs["vid"],
qid=batched_model_inputs["qid"],
)
targets = {}
# import pdb; pdb.set_trace()
if "span_labels" in batched_model_inputs:
targets["span_labels"] = [
dict(spans=e["spans"])
for e in batched_model_inputs["span_labels"]
]
if "saliency_pos_labels" in batched_model_inputs:
for name in ["saliency_pos_labels", "saliency_neg_labels"]:
targets[name] = batched_model_inputs[name]
if "saliency_all_labels" in batched_model_inputs:
targets["saliency_all_labels"] = batched_model_inputs["saliency_all_labels"]
targets["relevant_clips"] = batched_model_inputs["saliency_all_labels"]
targets = None if len(targets) == 0 else targets
return model_inputs, targets