|
import torch |
|
|
|
|
|
def span_xx_to_cxw(xx_spans): |
|
""" |
|
Args: |
|
xx_spans: tensor, (#windows, 2) or (..., 2), each row is a window of format (st, ed) |
|
|
|
Returns: |
|
cxw_spans: tensor, (#windows, 2), each row is a window of format (center=(st+ed)/2, width=(ed-st)) |
|
>>> spans = torch.Tensor([[0, 1], [0.2, 0.4]]) |
|
>>> span_xx_to_cxw(spans) |
|
tensor([[0.5000, 1.0000], |
|
[0.3000, 0.2000]]) |
|
>>> spans = torch.Tensor([[[0, 1], [0.2, 0.4]]]) |
|
>>> span_xx_to_cxw(spans) |
|
tensor([[[0.5000, 1.0000], |
|
[0.3000, 0.2000]]]) |
|
""" |
|
center = xx_spans.sum(-1) * 0.5 |
|
width = xx_spans[..., 1] - xx_spans[..., 0] |
|
return torch.stack([center, width], dim=-1) |
|
|
|
|
|
def span_cxw_to_xx(cxw_spans): |
|
""" |
|
Args: |
|
cxw_spans: tensor, (#windows, 2) or (..., 2), the last dim is a row denoting a window of format (center, width) |
|
|
|
>>> spans = torch.Tensor([[0.5000, 1.0000], [0.3000, 0.2000]]) |
|
>>> span_cxw_to_xx(spans) |
|
tensor([[0.0000, 1.0000], |
|
[0.2000, 0.4000]]) |
|
>>> spans = torch.Tensor([[[0.5000, 1.0000], [0.3000, 0.2000]]]) |
|
>>> span_cxw_to_xx(spans) |
|
tensor([[[0.0000, 1.0000], |
|
[0.2000, 0.4000]]]) |
|
""" |
|
x1 = cxw_spans[..., 0] - 0.5 * cxw_spans[..., 1] |
|
x2 = cxw_spans[..., 0] + 0.5 * cxw_spans[..., 1] |
|
return torch.stack([x1, x2], dim=-1) |
|
|
|
|
|
def temporal_iou(spans1, spans2): |
|
""" |
|
Args: |
|
spans1: (N, 2) torch.Tensor, each row defines a span [st, ed] |
|
spans2: (M, 2) torch.Tensor, ... |
|
|
|
Returns: |
|
iou: (N, M) torch.Tensor |
|
union: (N, M) torch.Tensor |
|
>>> test_spans1 = torch.Tensor([[0, 0.2], [0.5, 1.0]]) |
|
>>> test_spans2 = torch.Tensor([[0, 0.3], [0., 1.0]]) |
|
>>> temporal_iou(test_spans1, test_spans2) |
|
(tensor([[0.6667, 0.2000], |
|
[0.0000, 0.5000]]), |
|
tensor([[0.3000, 1.0000], |
|
[0.8000, 1.0000]])) |
|
""" |
|
areas1 = spans1[:, 1] - spans1[:, 0] |
|
areas2 = spans2[:, 1] - spans2[:, 0] |
|
|
|
left = torch.max(spans1[:, None, 0], spans2[:, 0]) |
|
right = torch.min(spans1[:, None, 1], spans2[:, 1]) |
|
|
|
inter = (right - left).clamp(min=0) |
|
union = areas1[:, None] + areas2 - inter |
|
|
|
iou = inter / union |
|
return iou, union |
|
|
|
|
|
def temporal_intersection_over_pred(gt_spans, pred_spans): |
|
""" intersection over the second input spans |
|
Args: |
|
gt_spans: (N, 2), |
|
pred_spans: (M, 2) |
|
|
|
Returns: |
|
|
|
""" |
|
left = torch.max(gt_spans[:, None, 0], pred_spans[:, 0]) |
|
right = torch.min(gt_spans[:, None, 1], pred_spans[:, 1]) |
|
|
|
inter = (right - left).clamp(min=0) |
|
inter_over_pred = inter / (pred_spans[:, 1] - pred_spans[:, 0]) |
|
return inter_over_pred |
|
|
|
|
|
def generalized_temporal_iou(spans1, spans2): |
|
""" |
|
Generalized IoU from https://giou.stanford.edu/ |
|
Also reference to DETR implementation of generalized_box_iou |
|
https://github.com/facebookresearch/detr/blob/master/util/box_ops.py#L40 |
|
|
|
Args: |
|
spans1: (N, 2) torch.Tensor, each row defines a span in xx format [st, ed] |
|
spans2: (M, 2) torch.Tensor, ... |
|
|
|
Returns: |
|
giou: (N, M) torch.Tensor |
|
|
|
>>> test_spans1 = torch.Tensor([[0, 0.2], [0.5, 1.0]]) |
|
>>> test_spans2 = torch.Tensor([[0, 0.3], [0., 1.0]]) |
|
>>> generalized_temporal_iou(test_spans1, test_spans2) |
|
tensor([[ 0.6667, 0.2000], |
|
[-0.2000, 0.5000]]) |
|
""" |
|
spans1 = spans1.float() |
|
spans2 = spans2.float() |
|
|
|
if (spans1[:, 1] < spans1[:, 0]).all(): |
|
torch.save({'spans1': spans1.cpu(), 'spans2': spans2.cpu()}, 'test_spans.pt') |
|
spans1[:, 1] += 0.0001 |
|
print(spans1) |
|
assert (spans1[:, 1] >= spans1[:, 0]).all() |
|
assert (spans2[:, 1] >= spans2[:, 0]).all() |
|
iou, union = temporal_iou(spans1, spans2) |
|
|
|
left = torch.min(spans1[:, None, 0], spans2[:, 0]) |
|
right = torch.max(spans1[:, None, 1], spans2[:, 1]) |
|
enclosing_area = (right - left).clamp(min=0) |
|
|
|
return iou - (enclosing_area - union) / enclosing_area |
|
|
|
|
|
|