|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Type |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from sam2.modeling.sam2_utils import LayerNorm2d, MLP |
|
|
|
|
|
class MaskDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int = 3, |
|
activation: Type[nn.Module] = nn.GELU, |
|
iou_head_depth: int = 3, |
|
iou_head_hidden_dim: int = 256, |
|
use_high_res_features: bool = False, |
|
iou_prediction_use_sigmoid=False, |
|
dynamic_multimask_via_stability=False, |
|
dynamic_multimask_stability_delta=0.05, |
|
dynamic_multimask_stability_thresh=0.98, |
|
pred_obj_scores: bool = False, |
|
pred_obj_scores_mlp: bool = False, |
|
use_multimask_token_for_obj_ptr: bool = False, |
|
) -> None: |
|
""" |
|
Predicts masks given an image and prompt embeddings, using a |
|
transformer architecture. |
|
|
|
Arguments: |
|
transformer_dim (int): the channel dimension of the transformer |
|
transformer (nn.Module): the transformer used to predict masks |
|
num_multimask_outputs (int): the number of masks to predict |
|
when disambiguating masks |
|
activation (nn.Module): the type of activation to use when |
|
upscaling masks |
|
iou_head_depth (int): the depth of the MLP used to predict |
|
mask quality |
|
iou_head_hidden_dim (int): the hidden dimension of the MLP |
|
used to predict mask quality |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
|
|
self.pred_obj_scores = pred_obj_scores |
|
if self.pred_obj_scores: |
|
self.obj_score_token = nn.Embedding(1, transformer_dim) |
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr |
|
|
|
self.output_upscaling = nn.Sequential( |
|
nn.ConvTranspose2d( |
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 |
|
), |
|
LayerNorm2d(transformer_dim // 4), |
|
activation(), |
|
nn.ConvTranspose2d( |
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 |
|
), |
|
activation(), |
|
) |
|
self.use_high_res_features = use_high_res_features |
|
if use_high_res_features: |
|
self.conv_s0 = nn.Conv2d( |
|
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 |
|
) |
|
self.conv_s1 = nn.Conv2d( |
|
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 |
|
) |
|
|
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[ |
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) |
|
for i in range(self.num_mask_tokens) |
|
] |
|
) |
|
|
|
self.iou_prediction_head = MLP( |
|
transformer_dim, |
|
iou_head_hidden_dim, |
|
self.num_mask_tokens, |
|
iou_head_depth, |
|
sigmoid_output=iou_prediction_use_sigmoid, |
|
) |
|
if self.pred_obj_scores: |
|
self.pred_obj_score_head = nn.Linear(transformer_dim, 1) |
|
if pred_obj_scores_mlp: |
|
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) |
|
|
|
|
|
|
|
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability |
|
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta |
|
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
repeat_image: bool, |
|
high_res_features: Optional[List[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks given image and prompt embeddings. |
|
|
|
Arguments: |
|
image_embeddings (torch.Tensor): the embeddings from the image encoder |
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings |
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes |
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs |
|
multimask_output (bool): Whether to return multiple masks or a single |
|
mask. |
|
|
|
Returns: |
|
torch.Tensor: batched predicted masks |
|
torch.Tensor: batched predictions of mask quality |
|
torch.Tensor: batched SAM token for mask output |
|
""" |
|
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( |
|
image_embeddings=image_embeddings, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
dense_prompt_embeddings=dense_prompt_embeddings, |
|
repeat_image=repeat_image, |
|
high_res_features=high_res_features, |
|
) |
|
|
|
|
|
if multimask_output: |
|
masks = masks[:, 1:, :, :] |
|
iou_pred = iou_pred[:, 1:] |
|
elif self.dynamic_multimask_via_stability and not self.training: |
|
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) |
|
else: |
|
masks = masks[:, 0:1, :, :] |
|
iou_pred = iou_pred[:, 0:1] |
|
|
|
if multimask_output and self.use_multimask_token_for_obj_ptr: |
|
sam_tokens_out = mask_tokens_out[:, 1:] |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
sam_tokens_out = mask_tokens_out[:, 0:1] |
|
|
|
|
|
return masks, iou_pred, sam_tokens_out, object_score_logits |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
repeat_image: bool, |
|
high_res_features: Optional[List[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts masks. See 'forward' for more details.""" |
|
|
|
s = 0 |
|
if self.pred_obj_scores: |
|
output_tokens = torch.cat( |
|
[ |
|
self.obj_score_token.weight, |
|
self.iou_token.weight, |
|
self.mask_tokens.weight, |
|
], |
|
dim=0, |
|
) |
|
s = 1 |
|
else: |
|
output_tokens = torch.cat( |
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0 |
|
) |
|
output_tokens = output_tokens.unsqueeze(0).expand( |
|
sparse_prompt_embeddings.size(0), -1, -1 |
|
) |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
if repeat_image: |
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
else: |
|
assert image_embeddings.shape[0] == tokens.shape[0] |
|
src = image_embeddings |
|
src = src + dense_prompt_embeddings |
|
assert ( |
|
image_pe.size(0) == 1 |
|
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" |
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = src.shape |
|
|
|
|
|
hs, src = self.transformer(src.to(dtype=torch.bfloat16), pos_src.to(dtype=torch.bfloat16), tokens.to(dtype=torch.bfloat16)) |
|
iou_token_out = hs[:, s, :] |
|
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] |
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w) |
|
if not self.use_high_res_features: |
|
upscaled_embedding = self.output_upscaling(src) |
|
else: |
|
dc1, ln1, act1, dc2, act2 = self.output_upscaling |
|
feat_s0, feat_s1 = high_res_features |
|
upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) |
|
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) |
|
|
|
hyper_in_list: List[torch.Tensor] = [] |
|
for i in range(self.num_mask_tokens): |
|
hyper_in_list.append( |
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) |
|
) |
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding.shape |
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) |
|
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
if self.pred_obj_scores: |
|
assert s == 1 |
|
object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) |
|
else: |
|
|
|
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) |
|
|
|
return masks, iou_pred, mask_tokens_out, object_score_logits |
|
|
|
def _get_stability_scores(self, mask_logits): |
|
""" |
|
Compute stability scores of the mask logits based on the IoU between upper and |
|
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. |
|
""" |
|
mask_logits = mask_logits.flatten(-2) |
|
stability_delta = self.dynamic_multimask_stability_delta |
|
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() |
|
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() |
|
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) |
|
return stability_scores |
|
|
|
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): |
|
""" |
|
When outputting a single mask, if the stability score from the current single-mask |
|
output (based on output token 0) falls below a threshold, we instead select from |
|
multi-mask outputs (based on output token 1~3) the mask with the highest predicted |
|
IoU score. This is intended to ensure a valid mask for both clicking and tracking. |
|
""" |
|
|
|
multimask_logits = all_mask_logits[:, 1:, :, :] |
|
multimask_iou_scores = all_iou_scores[:, 1:] |
|
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) |
|
batch_inds = torch.arange( |
|
multimask_iou_scores.size(0), device=all_iou_scores.device |
|
) |
|
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] |
|
best_multimask_logits = best_multimask_logits.unsqueeze(1) |
|
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] |
|
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) |
|
|
|
|
|
singlemask_logits = all_mask_logits[:, 0:1, :, :] |
|
singlemask_iou_scores = all_iou_scores[:, 0:1] |
|
stability_scores = self._get_stability_scores(singlemask_logits) |
|
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh |
|
|
|
|
|
mask_logits_out = torch.where( |
|
is_stable[..., None, None].expand_as(singlemask_logits), |
|
singlemask_logits, |
|
best_multimask_logits, |
|
) |
|
iou_scores_out = torch.where( |
|
is_stable.expand_as(singlemask_iou_scores), |
|
singlemask_iou_scores, |
|
best_multimask_iou_scores, |
|
) |
|
return mask_logits_out, iou_scores_out |
|
|