ynhe
init
16dc4f2
import os
import time
import torch
import argparse
from third_party.cgdetr.utils.basic_utils import mkdirp, load_json, save_json, make_zipfile, dict_to_markdown
import shutil
class BaseOptions(object):
saved_option_filename = "opt.json"
ckpt_filename = "model.ckpt"
tensorboard_log_dir = "tensorboard_log"
train_log_filename = "train.log.txt"
eval_log_filename = "eval.log.txt"
def __init__(self):
self.parser = None
self.initialized = False
self.opt = None
def initialize(self):
self.initialized = True
parser = argparse.ArgumentParser()
# parser.add_argument("--dset_name", type=str, choices=["hl", 'charadesSTA', ])
# parser.add_argument("--dset_domain", type=str,
# help="Domain to train for tvsum dataset. (Only used for tvsum and youtube-hl)")
parser.add_argument("--eval_split_name", type=str, default="val",
help="should match keys in video_duration_idx_path, must set for VCMR")
parser.add_argument("--debug", action="store_true",
help="debug (fast) mode, break all loops, do not load all data into memory.")
parser.add_argument("--data_ratio", type=float, default=1.0,
help="how many training and eval data to use. 1.0: use all, 0.1: use 10%."
"Use small portion for debug purposes. Note this is different from --debug, "
"which works by breaking the loops, typically they are not used together.")
parser.add_argument("--results_root", type=str, default="results")
parser.add_argument("--exp_id", type=str, default=None, help="id of this run, required at training")
parser.add_argument("--seed", type=int, default=2018, help="random seed")
# parser.add_argument("--device", type=int, default=0, help="0 cuda, -1 cpu")
parser.add_argument("--num_workers", type=int, default=0,
help="num subprocesses used to load the data, 0: use main process")
parser.add_argument("--no_pin_memory", action="store_true",
help="Don't use pin_memory=True for dataloader. "
"ref: https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/4")
# training config
# parser.add_argument("--lr", type=float, default=2e-4, help="learning rate")
# parser.add_argument("--lr_drop", type=int, default=800, help="drop learning rate to 1/10 every lr_drop epochs")
# parser.add_argument("--wd", type=float, default=1e-4, help="weight decay")
parser.add_argument("--n_epoch", type=int, default=200, help="number of epochs to run")
parser.add_argument("--max_es_cnt", type=int, default=200,
help="number of epochs to early stop, use -1 to disable early stop")
# parser.add_argument("--bsz", type=int, default=32, help="mini-batch size")
# parser.add_argument("--eval_bsz", type=int, default=100,
# help="mini-batch size at inference, for query")
parser.add_argument("--eval_epoch", type=int, default=5,help="inference epoch")
parser.add_argument("--grad_clip", type=float, default=0.1, help="perform gradient clip, -1: disable")
parser.add_argument("--eval_untrained", action="store_true", help="Evaluate on un-trained model")
parser.add_argument("--resume", type=str, default=None,
help="checkpoint path to resume or evaluate, without --resume_all this only load weights")
parser.add_argument("--resume_all", action="store_true",
help="if --resume_all, load optimizer/scheduler/epoch as well")
parser.add_argument("--start_epoch", type=int, default=None,
help="if None, will be set automatically when using --resume_all")
# Data config
parser.add_argument("--max_q_l", type=int, default=-1)
parser.add_argument("--max_v_l", type=int, default=-1)
parser.add_argument("--clip_length", type=float, default=2)
parser.add_argument("--max_windows", type=int, default=5)
parser.add_argument("--train_path", type=str, default=None)
parser.add_argument("--eval_path", type=str, default=None,
help="Evaluating during training, for Dev set. If None, will only do training, ")
parser.add_argument("--no_norm_vfeat", action="store_true", help="Do not do normalize video feat")
parser.add_argument("--no_norm_tfeat", action="store_true", help="Do not do normalize text feat")
parser.add_argument("--v_feat_dirs", type=str, nargs="+",
help="video feature dirs. If more than one, will concat their features. "
"Note that sub ctx features are also accepted here.")
parser.add_argument("--t_feat_dir", type=str, help="text/query feature dir")
# parser.add_argument("--a_feat_dir", type=str, help="audio feature dir")
parser.add_argument("--v_feat_dim", type=int, default=770, help="video feature dim")
parser.add_argument("--t_feat_dim", type=int, default=4096, help="text/query feature dim")
# parser.add_argument("--a_feat_dim", type=int, help="audio feature dim")
parser.add_argument("--ctx_mode", type=str, default="video_tef")
# Model config
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=3, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=3, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--t2v_layers', default=2, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--sent_layers', default=1, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--moment_layers', default=1, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dummy_layers', default=2, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--input_dropout', default=0.5, type=float,
help="Dropout applied in input")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument("--txt_drop_ratio", default=0, type=float,
help="drop txt_drop_ratio tokens from text input. 0.1=10%")
parser.add_argument("--use_txt_pos", action="store_true", help="use position_embedding for text as well.")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=10, type=int,
help="Number of query slots")
parser.add_argument('--num_dummies', default=45, type=int,
help="Number of dummy tokens")
parser.add_argument('--total_prompts', default=10, type=int,
help="Number of query slots")
parser.add_argument('--num_prompts', default=1, type=int,
help="Number of dummy tokens")
parser.add_argument('--pre_norm', action='store_true')
# other model configs
parser.add_argument("--n_input_proj", type=int, default=2, help="#layers to encoder input")
parser.add_argument("--contrastive_hdim", type=int, default=64, help="dim for contrastive embeddings")
parser.add_argument("--temperature", type=float, default=0.07, help="temperature nce contrastive_align_loss")
# Loss
parser.add_argument("--saliency_margin", type=float, default=0.2)
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument("--span_loss_type", default="l1", type=str, choices=['l1', 'ce'],
help="l1: (center-x, width) regression. ce: (st_idx, ed_idx) classification.")
parser.add_argument("--contrastive_align_loss", action="store_true",
help="Disable contrastive_align_loss between matched query spans and the text.")
# * Matcher
parser.add_argument('--set_cost_span', default=10, type=float,
help="L1 span coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=1, type=float,
help="giou span coefficient in the matching cost")
parser.add_argument('--set_cost_class', default=4, type=float,
help="Class coefficient in the matching cost")
# * Loss coefficients
parser.add_argument("--lw_saliency", type=float, default=1.,
help="weight for saliency loss, set to 0 will ignore")
parser.add_argument("--lw_wattn", type=float, default=1.,
help="weight for saliency loss, set to 0 will ignore")
parser.add_argument("--lw_ms_align", type=float, default=1.,
help="weight for saliency loss, set to 0 will ignore")
parser.add_argument("--lw_distill", type=float, default=1.,
help="weight for saliency loss, set to 0 will ignore")
parser.add_argument('--span_loss_coef', default=10, type=float)
parser.add_argument('--giou_loss_coef', default=1, type=float)
parser.add_argument('--label_loss_coef', default=4, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument("--contrastive_align_loss_coef", default=0.0, type=float)
parser.add_argument("--no_sort_results", action="store_true",
help="do not sort results, use this for moment query visualization")
parser.add_argument("--max_before_nms", type=int, default=10)
parser.add_argument("--max_after_nms", type=int, default=10)
parser.add_argument("--conf_thd", type=float, default=0.0, help="only keep windows with conf >= conf_thd")
parser.add_argument("--nms_thd", type=float, default=-1,
help="additionally use non-maximum suppression "
"(or non-minimum suppression for distance)"
"to post-processing the predictions. "
"-1: do not use nms. [0, 1]")
self.parser = parser
def display_save(self, opt):
args = vars(opt)
# Display settings
print(dict_to_markdown(vars(opt), max_str_len=120))
# Save settings
if not isinstance(self, TestOptions):
option_file_path = os.path.join(opt.results_dir, self.saved_option_filename) # not yaml file indeed
save_json(args, option_file_path, save_pretty=True)
def parse(self, a_feat_dir=None):
if not self.initialized:
self.initialize()
opt = self.parser.parse_args()
if opt.debug:
opt.results_root = os.path.sep.join(opt.results_root.split(os.path.sep)[:-1] + ["debug_results", ])
opt.num_workers = 0
if isinstance(self, TestOptions):
# modify model_dir to absolute path
# opt.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "results", opt.model_dir)
opt.model_dir = os.path.dirname(opt.resume)
if a_feat_dir is not None:
opt.a_feat_dir = a_feat_dir
saved_options = load_json(os.path.join(opt.model_dir, self.saved_option_filename))
for arg in saved_options: # use saved options to overwrite all BaseOptions args.
if arg not in ["results_root", "num_workers", "nms_thd", "debug", # "max_before_nms", "max_after_nms"
"max_pred_l", "min_pred_l",
"resume", "resume_all", "no_sort_results"]:
setattr(opt, arg, saved_options[arg])
# opt.no_core_driver = True
if opt.eval_results_dir is not None:
opt.results_dir = opt.eval_results_dir
else:
if opt.exp_id is None:
raise ValueError("--exp_id is required for at a training option!")
ctx_str = opt.ctx_mode + "_sub" if any(["sub_ctx" in p for p in opt.v_feat_dirs]) else opt.ctx_mode
opt.results_dir = os.path.join(opt.results_root,
"-".join([opt.dset_name, ctx_str, opt.exp_id,
str(opt.enc_layers) + str(opt.dec_layers) + str(opt.t2v_layers) + str(opt.moment_layers) + str(opt.dummy_layers) + str(opt.sent_layers),
'ndum_' + str(opt.num_dummies), 'nprom_' + str(opt.num_prompts) + '_' + str(opt.total_prompts)]))
mkdirp(opt.results_dir)
save_fns = ['cg_detr/model.py', 'cg_detr/transformer.py']
for save_fn in save_fns:
shutil.copyfile(save_fn, os.path.join(opt.results_dir, os.path.basename(save_fn)))
# save a copy of current code
code_dir = os.path.dirname(os.path.realpath(__file__))
code_zip_filename = os.path.join(opt.results_dir, "code.zip")
make_zipfile(code_dir, code_zip_filename,
enclosing_dir="code",
exclude_dirs_substring="results",
exclude_dirs=["results", "debug_results", "__pycache__"],
exclude_extensions=[".pyc", ".ipynb", ".swap"], )
self.display_save(opt)
opt.ckpt_filepath = os.path.join(opt.results_dir, self.ckpt_filename)
opt.train_log_filepath = os.path.join(opt.results_dir, self.train_log_filename)
opt.eval_log_filepath = os.path.join(opt.results_dir, self.eval_log_filename)
opt.tensorboard_log_dir = os.path.join(opt.results_dir, self.tensorboard_log_dir)
opt.device = torch.device("cuda" if opt.device >= 0 else "cpu")
opt.pin_memory = not opt.no_pin_memory
opt.use_tef = "tef" in opt.ctx_mode
opt.use_video = "video" in opt.ctx_mode
if not opt.use_video:
opt.v_feat_dim = 0
if opt.use_tef:
opt.v_feat_dim += 2
self.opt = opt
return opt
class TestOptions(BaseOptions):
"""add additional options for evaluating"""
def initialize(self):
BaseOptions.initialize(self)
# also need to specify --eval_split_name
self.parser.add_argument("--eval_id", type=str, help="evaluation id")
self.parser.add_argument("--eval_results_dir", type=str, default=None,
help="dir to save results, if not set, fall back to training results_dir")
self.parser.add_argument("--model_dir", type=str,
help="dir contains the model file, will be converted to absolute path afterwards")