File size: 16,141 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import numpy as np
from collections import OrderedDict, defaultdict
import json
import time
import copy
import multiprocessing as mp
from src.model.cgdetr_main.standalone_eval.utils import compute_average_precision_detection, \
    compute_temporal_iou_batch_cross, compute_temporal_iou_batch_paired, load_jsonl, get_ap


def compute_average_precision_detection_wrapper(
        input_triple, tiou_thresholds=np.linspace(0.5, 0.95, 10)):
    qid, ground_truth, prediction = input_triple
    scores = compute_average_precision_detection(
        ground_truth, prediction, tiou_thresholds=tiou_thresholds)
    return qid, scores


def compute_mr_ap(submission, ground_truth, iou_thds=np.linspace(0.5, 0.95, 10),
                  max_gt_windows=None, max_pred_windows=10, num_workers=8, chunksize=50):
    iou_thds = [float(f"{e:.2f}") for e in iou_thds]
    pred_qid2data = defaultdict(list)
    for d in submission:
        pred_windows = d["pred_relevant_windows"][:max_pred_windows] \
            if max_pred_windows is not None else d["pred_relevant_windows"]
        qid = d["qid"]
        for w in pred_windows:
            pred_qid2data[qid].append({
                "video-id": d["qid"],  # in order to use the API
                "t-start": w[0],
                "t-end": w[1],
                "score": w[2]
            })

    gt_qid2data = defaultdict(list)
    for d in ground_truth:
        gt_windows = d["relevant_windows"][:max_gt_windows] \
            if max_gt_windows is not None else d["relevant_windows"]
        qid = d["qid"]
        for w in gt_windows:
            gt_qid2data[qid].append({
                "video-id": d["qid"],
                "t-start": w[0],
                "t-end": w[1]
            })
    qid2ap_list = {}
    # start_time = time.time()
    data_triples = [[qid, gt_qid2data[qid], pred_qid2data[qid]] for qid in pred_qid2data]
    from functools import partial
    compute_ap_from_triple = partial(
        compute_average_precision_detection_wrapper, tiou_thresholds=iou_thds)

    if num_workers > 1:
        with mp.Pool(num_workers) as pool:
            for qid, scores in pool.imap_unordered(compute_ap_from_triple, data_triples, chunksize=chunksize):
                qid2ap_list[qid] = scores
    else:
        for data_triple in data_triples:
            qid, scores = compute_ap_from_triple(data_triple)
            qid2ap_list[qid] = scores

    # print(f"compute_average_precision_detection {time.time() - start_time:.2f} seconds.")
    ap_array = np.array(list(qid2ap_list.values()))  # (#queries, #thd)
    ap_thds = ap_array.mean(0)  # mAP at different IoU thresholds.
    iou_thd2ap = dict(zip([str(e) for e in iou_thds], ap_thds))
    iou_thd2ap["average"] = np.mean(ap_thds)
    # formatting
    iou_thd2ap = {k: float(f"{100 * v:.2f}") for k, v in iou_thd2ap.items()}
    return iou_thd2ap


def compute_mr_r1(submission, ground_truth, iou_thds=np.linspace(0.3, 0.95, 14)):
    """If a predicted segment has IoU >= iou_thd with one of the 1st GT segment, we define it positive"""
    iou_thds = [float(f"{e:.2f}") for e in iou_thds]
    pred_qid2window = {d["qid"]: d["pred_relevant_windows"][0][:2] for d in submission}  # :2 rm scores
    # gt_qid2window = {d["qid"]: d["relevant_windows"][0] for d in ground_truth}
    gt_qid2window = {}
    for d in ground_truth:
        cur_gt_windows = d["relevant_windows"]
        cur_qid = d["qid"]
        cur_max_iou_idx = 0
        if len(cur_gt_windows) > 0:  # select the GT window that has the highest IoU
            cur_ious = compute_temporal_iou_batch_cross(
                np.array([pred_qid2window[cur_qid]]), np.array(d["relevant_windows"])
            )[0]
            cur_max_iou_idx = np.argmax(cur_ious)
        gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_idx]

    qids = list(pred_qid2window.keys())
    pred_windows = np.array([pred_qid2window[k] for k in qids]).astype(float)
    gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float)
    pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows)
    iou_thd2recall_at_one = {}
    miou_at_one = float(f"{np.mean(pred_gt_iou) * 100:.2f}")
    for thd in iou_thds:
        iou_thd2recall_at_one[str(thd)] = float(f"{np.mean(pred_gt_iou >= thd) * 100:.2f}")
    return iou_thd2recall_at_one, miou_at_one


def get_window_len(window):
    return window[1] - window[0]


def get_data_by_range(submission, ground_truth, len_range):
    """ keep queries with ground truth window length in the specified length range.
    Args:
        submission:
        ground_truth:
        len_range: [min_l (int), max_l (int)]. the range is (min_l, max_l], i.e., min_l < l <= max_l
    """
    min_l, max_l = len_range
    if min_l == 0 and max_l == 150:  # min and max l in dataset
        return submission, ground_truth

    # only keep ground truth with windows in the specified length range
    # if multiple GT windows exists, we only keep the ones in the range
    ground_truth_in_range = []
    gt_qids_in_range = set()
    for d in ground_truth:
        rel_windows_in_range = [
            w for w in d["relevant_windows"] if min_l < get_window_len(w) <= max_l]
        if len(rel_windows_in_range) > 0:
            d = copy.deepcopy(d)
            d["relevant_windows"] = rel_windows_in_range
            ground_truth_in_range.append(d)
            gt_qids_in_range.add(d["qid"])

    # keep only submissions for ground_truth_in_range
    submission_in_range = []
    for d in submission:
        if d["qid"] in gt_qids_in_range:
            submission_in_range.append(copy.deepcopy(d))

    return submission_in_range, ground_truth_in_range


def eval_moment_retrieval(submission, ground_truth, verbose=True):
    length_ranges = [[0, 10], [10, 30], [30, 150], [0, 150], ]  #
    range_names = ["short", "middle", "long", "full"]

    ret_metrics = {}
    for l_range, name in zip(length_ranges, range_names):
        if verbose:
            start_time = time.time()
        _submission, _ground_truth = get_data_by_range(submission, ground_truth, l_range)
        print(f"{name}: {l_range}, {len(_ground_truth)}/{len(ground_truth)}="
              f"{100*len(_ground_truth)/len(ground_truth):.2f} examples.")
        if len(_ground_truth) == 0:
            # ret_metrics[name] = {"MR-mAP": 0., "MR-R1": 0.}
            dummy_dict = {}
            for k in np.linspace(0.5, 0.95, 19):
                dummy_dict[k] = 0.
            dummy_dict['average'] = 0.
            ret_metrics[name] = {"MR-mAP": dummy_dict, "MR-R1": dummy_dict}
        else:
            iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50)
            iou_thd2recall_at_one, miou_at_one = compute_mr_r1(_submission, _ground_truth)
            ret_metrics[name] = {"MR-mIoU": miou_at_one,
                                 "MR-mAP": iou_thd2average_precision,
                                 "MR-R1": iou_thd2recall_at_one}

            # iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50)
            # iou_thd2recall_at_one = compute_mr_r1(_submission, _ground_truth)
            # ret_metrics[name] = {"MR-mAP": iou_thd2average_precision, "MR-R1": iou_thd2recall_at_one}
            if verbose:
                print(f"[eval_moment_retrieval] [{name}] {time.time() - start_time:.2f} seconds")
    return ret_metrics


def compute_hl_hit1(qid2preds, qid2gt_scores_binary):
    qid2max_scored_clip_idx = {k: np.argmax(v["pred_saliency_scores"]) for k, v in qid2preds.items()}
    hit_scores = np.zeros((len(qid2preds), 3))
    qids = list(qid2preds.keys())
    for idx, qid in enumerate(qids):
        pred_clip_idx = qid2max_scored_clip_idx[qid]
        gt_scores_binary = qid2gt_scores_binary[qid]   # (#clips, 3)
        if pred_clip_idx < len(gt_scores_binary):
            hit_scores[idx] = gt_scores_binary[pred_clip_idx]
    # aggregate scores from 3 separate annotations (3 workers) by taking the max.
    # then average scores from all queries.
    hit_at_one = float(f"{100 * np.mean(np.max(hit_scores, 1)):.2f}")
    return hit_at_one


def compute_hl_ap(qid2preds, qid2gt_scores_binary, num_workers=8, chunksize=50):
    qid2pred_scores = {k: v["pred_saliency_scores"] for k, v in qid2preds.items()}
    ap_scores = np.zeros((len(qid2preds), 3))   # (#preds, 3)
    qids = list(qid2preds.keys())
    input_tuples = []
    for idx, qid in enumerate(qids):
        for w_idx in range(3):  # annotation score idx
            y_true = qid2gt_scores_binary[qid][:, w_idx]
            y_predict = np.array(qid2pred_scores[qid])
            input_tuples.append((idx, w_idx, y_true, y_predict))

    if num_workers > 1:
        with mp.Pool(num_workers) as pool:
            for idx, w_idx, score in pool.imap_unordered(
                    compute_ap_from_tuple, input_tuples, chunksize=chunksize):
                ap_scores[idx, w_idx] = score
    else:
        for input_tuple in input_tuples:
            idx, w_idx, score = compute_ap_from_tuple(input_tuple)
            ap_scores[idx, w_idx] = score

    # it's the same if we first average across different annotations, then average across queries
    # since all queries have the same #annotations.
    mean_ap = float(f"{100 * np.mean(ap_scores):.2f}")
    return mean_ap


def compute_ap_from_tuple(input_tuple):
    idx, w_idx, y_true, y_predict = input_tuple
    if len(y_true) < len(y_predict):
        # print(f"len(y_true) < len(y_predict) {len(y_true), len(y_predict)}")
        y_predict = y_predict[:len(y_true)]
    elif len(y_true) > len(y_predict):
        # print(f"len(y_true) > len(y_predict) {len(y_true), len(y_predict)}")
        _y_predict = np.zeros(len(y_true))
        _y_predict[:len(y_predict)] = y_predict
        y_predict = _y_predict

    score = get_ap(y_true, y_predict)
    return idx, w_idx, score


def mk_gt_scores(gt_data, clip_length=2):
    """gt_data, dict, """
    num_clips = int(gt_data["duration"] / clip_length)
    saliency_scores_full_video = np.zeros((num_clips, 3))
    relevant_clip_ids = np.array(gt_data["relevant_clip_ids"])  # (#relevant_clip_ids, )
    saliency_scores_relevant_clips = np.array(gt_data["saliency_scores"])  # (#relevant_clip_ids, 3)
    saliency_scores_full_video[relevant_clip_ids] = saliency_scores_relevant_clips
    return saliency_scores_full_video  # (#clips_in_video, 3)  the scores are in range [0, 4]


def eval_highlight(submission, ground_truth, verbose=True):
    """
    Args:
        submission:
        ground_truth:
        verbose:
    """
    qid2preds = {d["qid"]: d for d in submission}
    qid2gt_scores_full_range = {d["qid"]: mk_gt_scores(d) for d in ground_truth}  # scores in range [0, 4]
    # gt_saliency_score_min: int, in [0, 1, 2, 3, 4]. The minimum score for a positive clip.
    gt_saliency_score_min_list = [2, 3, 4]
    saliency_score_names = ["Fair", "Good", "VeryGood"]
    highlight_det_metrics = {}
    for gt_saliency_score_min, score_name in zip(gt_saliency_score_min_list, saliency_score_names):
        start_time = time.time()
        qid2gt_scores_binary = {
            k: (v >= gt_saliency_score_min).astype(float)
            for k, v in qid2gt_scores_full_range.items()}  # scores in [0, 1]
        hit_at_one = compute_hl_hit1(qid2preds, qid2gt_scores_binary)
        mean_ap = compute_hl_ap(qid2preds, qid2gt_scores_binary)
        highlight_det_metrics[f"HL-min-{score_name}"] = {"HL-mAP": mean_ap, "HL-Hit1": hit_at_one}
        if verbose:
            print(f"Calculating highlight scores with min score {gt_saliency_score_min} ({score_name})")
            print(f"Time cost {time.time() - start_time:.2f} seconds")
    return highlight_det_metrics


def eval_submission(submission, ground_truth, verbose=True, match_number=False, hl=False):
    """
    Args:
        submission: list(dict), each dict is {
            qid: str,
            query: str,
            vid: str,
            pred_relevant_windows: list([st, ed]),
            pred_saliency_scores: list(float), len == #clips in video.
                i.e., each clip in the video will have a saliency score.
        }
        ground_truth: list(dict), each dict is     {
          "qid": 7803,
          "query": "Man in gray top walks from outside to inside.",
          "duration": 150,
          "vid": "RoripwjYFp8_360.0_510.0",
          "relevant_clip_ids": [13, 14, 15, 16, 17]
          "saliency_scores": [[4, 4, 2], [3, 4, 2], [2, 2, 3], [2, 2, 2], [0, 1, 3]]
               each sublist corresponds to one clip in relevant_clip_ids.
               The 3 elements in the sublist are scores from 3 different workers. The
               scores are in [0, 1, 2, 3, 4], meaning [Very Bad, ..., Good, Very Good]
        }
        verbose:
        match_number:

    Returns:

    """
    pred_qids = set([e["qid"] for e in submission])
    gt_qids = set([e["qid"] for e in ground_truth])
    # import pdb; pdb.set_trace()
    if match_number:
        assert pred_qids == gt_qids, \
            f"qids in ground_truth and submission must match. " \
            f"use `match_number=False` if you wish to disable this check"
    else:  # only leave the items that exists in both submission and ground_truth
        shared_qids = pred_qids.intersection(gt_qids)
        submission = [e for e in submission if e["qid"] in shared_qids]
        ground_truth = [e for e in ground_truth if e["qid"] in shared_qids]

    eval_metrics = {}
    eval_metrics_brief = OrderedDict()
    if "pred_relevant_windows" in submission[0]:
        moment_ret_scores = eval_moment_retrieval(submission, ground_truth, verbose=verbose)
        eval_metrics.update(moment_ret_scores)
        moment_ret_scores_brief = {
            "MR-full-mAP": moment_ret_scores["full"]["MR-mAP"]["average"],
            "[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.5"],
            "[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.75"],
            "MR-short-mAP": moment_ret_scores["short"]["MR-mAP"]["average"],
            "MR-middle-mAP": moment_ret_scores["middle"]["MR-mAP"]["average"],
            "MR-long-mAP": moment_ret_scores["long"]["MR-mAP"]["average"],
            "MR-full-mIoU": moment_ret_scores["full"]["MR-mIoU"],
            "[email protected]": moment_ret_scores["full"]["MR-R1"]["0.3"],
            "[email protected]": moment_ret_scores["full"]["MR-R1"]["0.5"],
            "[email protected]": moment_ret_scores["full"]["MR-R1"]["0.7"],
        }
        eval_metrics_brief.update(
            sorted([(k, v) for k, v in moment_ret_scores_brief.items()], key=lambda x: x[0]))

    if "pred_saliency_scores" in submission[0] and hl:
        highlight_det_scores = eval_highlight(
            submission, ground_truth, verbose=verbose)
        eval_metrics.update(highlight_det_scores)
        highlight_det_scores_brief = dict([
            (f"{k}-{sub_k.split('-')[1]}", v[sub_k])
            for k, v in highlight_det_scores.items() for sub_k in v])
        eval_metrics_brief.update(highlight_det_scores_brief)

    # sort by keys
    final_eval_metrics = OrderedDict()
    final_eval_metrics["brief"] = eval_metrics_brief
    final_eval_metrics.update(sorted([(k, v) for k, v in eval_metrics.items()], key=lambda x: x[0]))
    return final_eval_metrics


def eval_main():
    import argparse
    parser = argparse.ArgumentParser(description="Moments and Highlights Evaluation Script")
    parser.add_argument("--submission_path", type=str, help="path to generated prediction file")
    parser.add_argument("--gt_path", type=str, help="path to GT file")
    parser.add_argument("--save_path", type=str, help="path to save the results")
    parser.add_argument("--not_verbose", action="store_true")
    args = parser.parse_args()

    verbose = not args.not_verbose
    submission = load_jsonl(args.submission_path)
    gt = load_jsonl(args.gt_path)
    results = eval_submission(submission, gt, verbose=verbose)
    if verbose:
        print(json.dumps(results, indent=4))

    with open(args.save_path, "w") as f:
        f.write(json.dumps(results, indent=4))


if __name__ == '__main__':
    eval_main()