File size: 16,141 Bytes
16dc4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import numpy as np
from collections import OrderedDict, defaultdict
import json
import time
import copy
import multiprocessing as mp
from src.model.cgdetr_main.standalone_eval.utils import compute_average_precision_detection, \
compute_temporal_iou_batch_cross, compute_temporal_iou_batch_paired, load_jsonl, get_ap
def compute_average_precision_detection_wrapper(
input_triple, tiou_thresholds=np.linspace(0.5, 0.95, 10)):
qid, ground_truth, prediction = input_triple
scores = compute_average_precision_detection(
ground_truth, prediction, tiou_thresholds=tiou_thresholds)
return qid, scores
def compute_mr_ap(submission, ground_truth, iou_thds=np.linspace(0.5, 0.95, 10),
max_gt_windows=None, max_pred_windows=10, num_workers=8, chunksize=50):
iou_thds = [float(f"{e:.2f}") for e in iou_thds]
pred_qid2data = defaultdict(list)
for d in submission:
pred_windows = d["pred_relevant_windows"][:max_pred_windows] \
if max_pred_windows is not None else d["pred_relevant_windows"]
qid = d["qid"]
for w in pred_windows:
pred_qid2data[qid].append({
"video-id": d["qid"], # in order to use the API
"t-start": w[0],
"t-end": w[1],
"score": w[2]
})
gt_qid2data = defaultdict(list)
for d in ground_truth:
gt_windows = d["relevant_windows"][:max_gt_windows] \
if max_gt_windows is not None else d["relevant_windows"]
qid = d["qid"]
for w in gt_windows:
gt_qid2data[qid].append({
"video-id": d["qid"],
"t-start": w[0],
"t-end": w[1]
})
qid2ap_list = {}
# start_time = time.time()
data_triples = [[qid, gt_qid2data[qid], pred_qid2data[qid]] for qid in pred_qid2data]
from functools import partial
compute_ap_from_triple = partial(
compute_average_precision_detection_wrapper, tiou_thresholds=iou_thds)
if num_workers > 1:
with mp.Pool(num_workers) as pool:
for qid, scores in pool.imap_unordered(compute_ap_from_triple, data_triples, chunksize=chunksize):
qid2ap_list[qid] = scores
else:
for data_triple in data_triples:
qid, scores = compute_ap_from_triple(data_triple)
qid2ap_list[qid] = scores
# print(f"compute_average_precision_detection {time.time() - start_time:.2f} seconds.")
ap_array = np.array(list(qid2ap_list.values())) # (#queries, #thd)
ap_thds = ap_array.mean(0) # mAP at different IoU thresholds.
iou_thd2ap = dict(zip([str(e) for e in iou_thds], ap_thds))
iou_thd2ap["average"] = np.mean(ap_thds)
# formatting
iou_thd2ap = {k: float(f"{100 * v:.2f}") for k, v in iou_thd2ap.items()}
return iou_thd2ap
def compute_mr_r1(submission, ground_truth, iou_thds=np.linspace(0.3, 0.95, 14)):
"""If a predicted segment has IoU >= iou_thd with one of the 1st GT segment, we define it positive"""
iou_thds = [float(f"{e:.2f}") for e in iou_thds]
pred_qid2window = {d["qid"]: d["pred_relevant_windows"][0][:2] for d in submission} # :2 rm scores
# gt_qid2window = {d["qid"]: d["relevant_windows"][0] for d in ground_truth}
gt_qid2window = {}
for d in ground_truth:
cur_gt_windows = d["relevant_windows"]
cur_qid = d["qid"]
cur_max_iou_idx = 0
if len(cur_gt_windows) > 0: # select the GT window that has the highest IoU
cur_ious = compute_temporal_iou_batch_cross(
np.array([pred_qid2window[cur_qid]]), np.array(d["relevant_windows"])
)[0]
cur_max_iou_idx = np.argmax(cur_ious)
gt_qid2window[cur_qid] = cur_gt_windows[cur_max_iou_idx]
qids = list(pred_qid2window.keys())
pred_windows = np.array([pred_qid2window[k] for k in qids]).astype(float)
gt_windows = np.array([gt_qid2window[k] for k in qids]).astype(float)
pred_gt_iou = compute_temporal_iou_batch_paired(pred_windows, gt_windows)
iou_thd2recall_at_one = {}
miou_at_one = float(f"{np.mean(pred_gt_iou) * 100:.2f}")
for thd in iou_thds:
iou_thd2recall_at_one[str(thd)] = float(f"{np.mean(pred_gt_iou >= thd) * 100:.2f}")
return iou_thd2recall_at_one, miou_at_one
def get_window_len(window):
return window[1] - window[0]
def get_data_by_range(submission, ground_truth, len_range):
""" keep queries with ground truth window length in the specified length range.
Args:
submission:
ground_truth:
len_range: [min_l (int), max_l (int)]. the range is (min_l, max_l], i.e., min_l < l <= max_l
"""
min_l, max_l = len_range
if min_l == 0 and max_l == 150: # min and max l in dataset
return submission, ground_truth
# only keep ground truth with windows in the specified length range
# if multiple GT windows exists, we only keep the ones in the range
ground_truth_in_range = []
gt_qids_in_range = set()
for d in ground_truth:
rel_windows_in_range = [
w for w in d["relevant_windows"] if min_l < get_window_len(w) <= max_l]
if len(rel_windows_in_range) > 0:
d = copy.deepcopy(d)
d["relevant_windows"] = rel_windows_in_range
ground_truth_in_range.append(d)
gt_qids_in_range.add(d["qid"])
# keep only submissions for ground_truth_in_range
submission_in_range = []
for d in submission:
if d["qid"] in gt_qids_in_range:
submission_in_range.append(copy.deepcopy(d))
return submission_in_range, ground_truth_in_range
def eval_moment_retrieval(submission, ground_truth, verbose=True):
length_ranges = [[0, 10], [10, 30], [30, 150], [0, 150], ] #
range_names = ["short", "middle", "long", "full"]
ret_metrics = {}
for l_range, name in zip(length_ranges, range_names):
if verbose:
start_time = time.time()
_submission, _ground_truth = get_data_by_range(submission, ground_truth, l_range)
print(f"{name}: {l_range}, {len(_ground_truth)}/{len(ground_truth)}="
f"{100*len(_ground_truth)/len(ground_truth):.2f} examples.")
if len(_ground_truth) == 0:
# ret_metrics[name] = {"MR-mAP": 0., "MR-R1": 0.}
dummy_dict = {}
for k in np.linspace(0.5, 0.95, 19):
dummy_dict[k] = 0.
dummy_dict['average'] = 0.
ret_metrics[name] = {"MR-mAP": dummy_dict, "MR-R1": dummy_dict}
else:
iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50)
iou_thd2recall_at_one, miou_at_one = compute_mr_r1(_submission, _ground_truth)
ret_metrics[name] = {"MR-mIoU": miou_at_one,
"MR-mAP": iou_thd2average_precision,
"MR-R1": iou_thd2recall_at_one}
# iou_thd2average_precision = compute_mr_ap(_submission, _ground_truth, num_workers=8, chunksize=50)
# iou_thd2recall_at_one = compute_mr_r1(_submission, _ground_truth)
# ret_metrics[name] = {"MR-mAP": iou_thd2average_precision, "MR-R1": iou_thd2recall_at_one}
if verbose:
print(f"[eval_moment_retrieval] [{name}] {time.time() - start_time:.2f} seconds")
return ret_metrics
def compute_hl_hit1(qid2preds, qid2gt_scores_binary):
qid2max_scored_clip_idx = {k: np.argmax(v["pred_saliency_scores"]) for k, v in qid2preds.items()}
hit_scores = np.zeros((len(qid2preds), 3))
qids = list(qid2preds.keys())
for idx, qid in enumerate(qids):
pred_clip_idx = qid2max_scored_clip_idx[qid]
gt_scores_binary = qid2gt_scores_binary[qid] # (#clips, 3)
if pred_clip_idx < len(gt_scores_binary):
hit_scores[idx] = gt_scores_binary[pred_clip_idx]
# aggregate scores from 3 separate annotations (3 workers) by taking the max.
# then average scores from all queries.
hit_at_one = float(f"{100 * np.mean(np.max(hit_scores, 1)):.2f}")
return hit_at_one
def compute_hl_ap(qid2preds, qid2gt_scores_binary, num_workers=8, chunksize=50):
qid2pred_scores = {k: v["pred_saliency_scores"] for k, v in qid2preds.items()}
ap_scores = np.zeros((len(qid2preds), 3)) # (#preds, 3)
qids = list(qid2preds.keys())
input_tuples = []
for idx, qid in enumerate(qids):
for w_idx in range(3): # annotation score idx
y_true = qid2gt_scores_binary[qid][:, w_idx]
y_predict = np.array(qid2pred_scores[qid])
input_tuples.append((idx, w_idx, y_true, y_predict))
if num_workers > 1:
with mp.Pool(num_workers) as pool:
for idx, w_idx, score in pool.imap_unordered(
compute_ap_from_tuple, input_tuples, chunksize=chunksize):
ap_scores[idx, w_idx] = score
else:
for input_tuple in input_tuples:
idx, w_idx, score = compute_ap_from_tuple(input_tuple)
ap_scores[idx, w_idx] = score
# it's the same if we first average across different annotations, then average across queries
# since all queries have the same #annotations.
mean_ap = float(f"{100 * np.mean(ap_scores):.2f}")
return mean_ap
def compute_ap_from_tuple(input_tuple):
idx, w_idx, y_true, y_predict = input_tuple
if len(y_true) < len(y_predict):
# print(f"len(y_true) < len(y_predict) {len(y_true), len(y_predict)}")
y_predict = y_predict[:len(y_true)]
elif len(y_true) > len(y_predict):
# print(f"len(y_true) > len(y_predict) {len(y_true), len(y_predict)}")
_y_predict = np.zeros(len(y_true))
_y_predict[:len(y_predict)] = y_predict
y_predict = _y_predict
score = get_ap(y_true, y_predict)
return idx, w_idx, score
def mk_gt_scores(gt_data, clip_length=2):
"""gt_data, dict, """
num_clips = int(gt_data["duration"] / clip_length)
saliency_scores_full_video = np.zeros((num_clips, 3))
relevant_clip_ids = np.array(gt_data["relevant_clip_ids"]) # (#relevant_clip_ids, )
saliency_scores_relevant_clips = np.array(gt_data["saliency_scores"]) # (#relevant_clip_ids, 3)
saliency_scores_full_video[relevant_clip_ids] = saliency_scores_relevant_clips
return saliency_scores_full_video # (#clips_in_video, 3) the scores are in range [0, 4]
def eval_highlight(submission, ground_truth, verbose=True):
"""
Args:
submission:
ground_truth:
verbose:
"""
qid2preds = {d["qid"]: d for d in submission}
qid2gt_scores_full_range = {d["qid"]: mk_gt_scores(d) for d in ground_truth} # scores in range [0, 4]
# gt_saliency_score_min: int, in [0, 1, 2, 3, 4]. The minimum score for a positive clip.
gt_saliency_score_min_list = [2, 3, 4]
saliency_score_names = ["Fair", "Good", "VeryGood"]
highlight_det_metrics = {}
for gt_saliency_score_min, score_name in zip(gt_saliency_score_min_list, saliency_score_names):
start_time = time.time()
qid2gt_scores_binary = {
k: (v >= gt_saliency_score_min).astype(float)
for k, v in qid2gt_scores_full_range.items()} # scores in [0, 1]
hit_at_one = compute_hl_hit1(qid2preds, qid2gt_scores_binary)
mean_ap = compute_hl_ap(qid2preds, qid2gt_scores_binary)
highlight_det_metrics[f"HL-min-{score_name}"] = {"HL-mAP": mean_ap, "HL-Hit1": hit_at_one}
if verbose:
print(f"Calculating highlight scores with min score {gt_saliency_score_min} ({score_name})")
print(f"Time cost {time.time() - start_time:.2f} seconds")
return highlight_det_metrics
def eval_submission(submission, ground_truth, verbose=True, match_number=False, hl=False):
"""
Args:
submission: list(dict), each dict is {
qid: str,
query: str,
vid: str,
pred_relevant_windows: list([st, ed]),
pred_saliency_scores: list(float), len == #clips in video.
i.e., each clip in the video will have a saliency score.
}
ground_truth: list(dict), each dict is {
"qid": 7803,
"query": "Man in gray top walks from outside to inside.",
"duration": 150,
"vid": "RoripwjYFp8_360.0_510.0",
"relevant_clip_ids": [13, 14, 15, 16, 17]
"saliency_scores": [[4, 4, 2], [3, 4, 2], [2, 2, 3], [2, 2, 2], [0, 1, 3]]
each sublist corresponds to one clip in relevant_clip_ids.
The 3 elements in the sublist are scores from 3 different workers. The
scores are in [0, 1, 2, 3, 4], meaning [Very Bad, ..., Good, Very Good]
}
verbose:
match_number:
Returns:
"""
pred_qids = set([e["qid"] for e in submission])
gt_qids = set([e["qid"] for e in ground_truth])
# import pdb; pdb.set_trace()
if match_number:
assert pred_qids == gt_qids, \
f"qids in ground_truth and submission must match. " \
f"use `match_number=False` if you wish to disable this check"
else: # only leave the items that exists in both submission and ground_truth
shared_qids = pred_qids.intersection(gt_qids)
submission = [e for e in submission if e["qid"] in shared_qids]
ground_truth = [e for e in ground_truth if e["qid"] in shared_qids]
eval_metrics = {}
eval_metrics_brief = OrderedDict()
if "pred_relevant_windows" in submission[0]:
moment_ret_scores = eval_moment_retrieval(submission, ground_truth, verbose=verbose)
eval_metrics.update(moment_ret_scores)
moment_ret_scores_brief = {
"MR-full-mAP": moment_ret_scores["full"]["MR-mAP"]["average"],
"[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.5"],
"[email protected]": moment_ret_scores["full"]["MR-mAP"]["0.75"],
"MR-short-mAP": moment_ret_scores["short"]["MR-mAP"]["average"],
"MR-middle-mAP": moment_ret_scores["middle"]["MR-mAP"]["average"],
"MR-long-mAP": moment_ret_scores["long"]["MR-mAP"]["average"],
"MR-full-mIoU": moment_ret_scores["full"]["MR-mIoU"],
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.3"],
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.5"],
"[email protected]": moment_ret_scores["full"]["MR-R1"]["0.7"],
}
eval_metrics_brief.update(
sorted([(k, v) for k, v in moment_ret_scores_brief.items()], key=lambda x: x[0]))
if "pred_saliency_scores" in submission[0] and hl:
highlight_det_scores = eval_highlight(
submission, ground_truth, verbose=verbose)
eval_metrics.update(highlight_det_scores)
highlight_det_scores_brief = dict([
(f"{k}-{sub_k.split('-')[1]}", v[sub_k])
for k, v in highlight_det_scores.items() for sub_k in v])
eval_metrics_brief.update(highlight_det_scores_brief)
# sort by keys
final_eval_metrics = OrderedDict()
final_eval_metrics["brief"] = eval_metrics_brief
final_eval_metrics.update(sorted([(k, v) for k, v in eval_metrics.items()], key=lambda x: x[0]))
return final_eval_metrics
def eval_main():
import argparse
parser = argparse.ArgumentParser(description="Moments and Highlights Evaluation Script")
parser.add_argument("--submission_path", type=str, help="path to generated prediction file")
parser.add_argument("--gt_path", type=str, help="path to GT file")
parser.add_argument("--save_path", type=str, help="path to save the results")
parser.add_argument("--not_verbose", action="store_true")
args = parser.parse_args()
verbose = not args.not_verbose
submission = load_jsonl(args.submission_path)
gt = load_jsonl(args.gt_path)
results = eval_submission(submission, gt, verbose=verbose)
if verbose:
print(json.dumps(results, indent=4))
with open(args.save_path, "w") as f:
f.write(json.dumps(results, indent=4))
if __name__ == '__main__':
eval_main()
|