File size: 10,951 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import time
import json
import pprint
import random
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict

import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# import sys
# print(sys.path)
# sys.path.insert(os.getcwd(),0)
# print(sys.path)

from cg_detr.config import BaseOptions
from cg_detr.start_end_dataset import StartEndDataset, start_end_collate, prepare_batch_inputs
from cg_detr.inference import eval_epoch, start_inference, setup_model
from utils.basic_utils import AverageMeter, dict_to_markdown
from utils.model_utils import count_parameters


import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)


def set_seed(seed, use_cuda=True):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.manual_seed_all(seed)


def train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer):
    logger.info(f'[Epoch {epoch_i+1}]')
    model.train()
    criterion.train()

    # init meters
    time_meters = defaultdict(AverageMeter)
    loss_meters = defaultdict(AverageMeter)

    num_training_examples = len(train_loader)
    timer_dataloading = time.time()
    for batch_idx, batch in tqdm(enumerate(train_loader),
                                 desc="Training Iteration",
                                 total=num_training_examples):
        time_meters["dataloading_time"].update(time.time() - timer_dataloading)
        timer_start = time.time()
        model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
        time_meters["prepare_inputs_time"].update(time.time() - timer_start)
        timer_start = time.time()

        outputs = model(**model_inputs, targets=targets)
        loss_dict = criterion(outputs, targets)
        weight_dict = criterion.weight_dict
        losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
        time_meters["model_forward_time"].update(time.time() - timer_start)

        timer_start = time.time()
        optimizer.zero_grad()
        losses.backward()
        if opt.grad_clip > 0:
            nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
        optimizer.step()
        time_meters["model_backward_time"].update(time.time() - timer_start)

        loss_dict["loss_overall"] = float(losses)  # for logging only
        for k, v in loss_dict.items():
            loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))

        timer_dataloading = time.time()
        if opt.debug and batch_idx == 3:
            break

    # print/add logs
    tb_writer.add_scalar("Train/lr", float(optimizer.param_groups[0]["lr"]), epoch_i+1)
    for k, v in loss_meters.items():
        tb_writer.add_scalar("Train/{}".format(k), v.avg, epoch_i+1)

    to_write = opt.train_log_txt_formatter.format(
        time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
        epoch=epoch_i+1,
        loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()]))
    with open(opt.train_log_filepath, "a") as f:
        f.write(to_write)

    logger.info("Epoch time stats:")
    for name, meter in time_meters.items():
        d = {k: f"{getattr(meter, k):.4f}" for k in ["max", "min", "avg"]}
        logger.info(f"{name} ==> {d}")


def train(model, criterion, optimizer, lr_scheduler, train_dataset, val_dataset, opt):
    if opt.device.type == "cuda":
        logger.info("CUDA enabled.")
        model.to(opt.device)

    tb_writer = SummaryWriter(opt.tensorboard_log_dir)
    tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
    opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
    opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"


    train_loader = DataLoader(
        train_dataset,
        collate_fn=start_end_collate,
        batch_size=opt.bsz,
        num_workers=opt.num_workers,
        shuffle=True,
        pin_memory=opt.pin_memory
    )

    prev_best_score = 0.
    es_cnt = 0
    # start_epoch = 0
    if opt.start_epoch is None:
        start_epoch = -1 if opt.eval_untrained else 0
    else:
        start_epoch = opt.start_epoch
    save_submission_filename = "latest_{}_{}_preds.jsonl".format(opt.dset_name, opt.eval_split_name)
    for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
        if epoch_i > -1:
            train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer)
            lr_scheduler.step()
        eval_epoch_interval = opt.eval_epoch
        if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
            with torch.no_grad():
                metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
                    eval_epoch(model, val_dataset, opt, save_submission_filename, epoch_i, criterion, tb_writer)

            # log
            to_write = opt.eval_log_txt_formatter.format(
                time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
                epoch=epoch_i,
                loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
                eval_metrics_str=json.dumps(metrics_no_nms))

            with open(opt.eval_log_filepath, "a") as f:
                f.write(to_write)
            logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
            if metrics_nms is not None:
                logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))

            metrics = metrics_no_nms
            for k, v in metrics["brief"].items():
                tb_writer.add_scalar(f"Eval/{k}", float(v), epoch_i+1)

            if opt.dset_name in ['hl']:
                stop_score = metrics["brief"]["MR-full-mAP"]
            else:
                stop_score = (metrics["brief"]["[email protected]"] + metrics["brief"]["[email protected]"]) / 2

                
            if stop_score > prev_best_score:
                es_cnt = 0
                prev_best_score = stop_score

                checkpoint = {
                    "model": model.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "lr_scheduler": lr_scheduler.state_dict(),
                    "epoch": epoch_i,
                    "opt": opt
                }
                torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"))

                best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
                for src, tgt in zip(latest_file_paths, best_file_paths):
                    os.renames(src, tgt)
                logger.info("The checkpoint file has been updated.")
            else:
                es_cnt += 1
                if opt.max_es_cnt != -1 and es_cnt > opt.max_es_cnt:  # early stop
                    with open(opt.train_log_filepath, "a") as f:
                        f.write(f"Early Stop at epoch {epoch_i}")
                    logger.info(f"\n>>>>> Early stop at epoch {epoch_i}  {prev_best_score}\n")
                    break

            # save ckpt
            checkpoint = {
                "model": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "epoch": epoch_i,
                "opt": opt
            }
            torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_latest.ckpt"))

        # save_interval = 10 if "subs_train" in opt.train_path else 50  # smaller for pretrain
        # if (epoch_i + 1) % save_interval == 0 or (epoch_i + 1) % opt.lr_drop == 0:  # additional copies
        #     checkpoint = {
        #         "model": model.state_dict(),
        #         "optimizer": optimizer.state_dict(),
        #         "epoch": epoch_i,
        #         "opt": opt
        #     }
        #     torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_e{epoch_i:04d}.ckpt"))

        if opt.debug:
            break

    tb_writer.close()



def start_training():
    logger.info("Setup config, data and model...")
    opt = BaseOptions().parse()
    set_seed(opt.seed)
    if opt.debug:  # keep the model run deterministically
        # 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
        # Enable this only when input size is fixed.
        cudnn.benchmark = False
        cudnn.deterministic = True


    dataset_config = dict(
        dset_name=opt.dset_name,
        data_path=opt.train_path,
        v_feat_dirs=opt.v_feat_dirs,
        q_feat_dir=opt.t_feat_dir,
        q_feat_type="last_hidden_state",
        max_q_l=opt.max_q_l,
        max_v_l=opt.max_v_l,
        ctx_mode=opt.ctx_mode,
        data_ratio=opt.data_ratio,
        normalize_v=not opt.no_norm_vfeat,
        normalize_t=not opt.no_norm_tfeat,
        clip_len=opt.clip_length,
        max_windows=opt.max_windows,
        span_loss_type=opt.span_loss_type,
        txt_drop_ratio=opt.txt_drop_ratio,
        dset_domain=opt.dset_domain,
    )
    dataset_config["data_path"] = opt.train_path
    train_dataset = StartEndDataset(**dataset_config)
    # import pdb; pdb.set_trace()
    # train_dataset[0]

    if opt.eval_path is not None:
        dataset_config["data_path"] = opt.eval_path
        dataset_config["txt_drop_ratio"] = 0
        dataset_config["q_feat_dir"] = opt.t_feat_dir.replace("sub_features", "text_features")  # for pretraining
        # dataset_config["load_labels"] = False  # uncomment to calculate eval loss

        eval_dataset = StartEndDataset(**dataset_config)

    else:
        eval_dataset = None

    model, criterion, optimizer, lr_scheduler = setup_model(opt)
    logger.info(f"Model {model}")
    count_parameters(model)
    logger.info("Start Training...")
    
    train(model, criterion, optimizer, lr_scheduler, train_dataset, eval_dataset, opt)
    
    return opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"), opt.eval_split_name, opt.eval_path, opt.debug, opt


if __name__ == '__main__':
    best_ckpt_path, eval_split_name, eval_path, debug, opt = start_training()
    if not debug:
        input_args = ["--resume", best_ckpt_path,
                      "--eval_split_name", eval_split_name,
                      "--eval_path", eval_path]

        import sys
        sys.argv[1:] = input_args
        logger.info("\n\n\nFINISHED TRAINING!!!")
        logger.info("Evaluating model at {}".format(best_ckpt_path))
        logger.info("Input args {}".format(sys.argv[1:]))
        start_inference(opt)