File size: 63,870 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
CG-DETR model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn

from third_party.cgdetr.cg_detr.span_utils import generalized_temporal_iou, span_cxw_to_xx

from third_party.cgdetr.cg_detr.matcher import build_matcher
from third_party.cgdetr.cg_detr.transformer import build_transformer, TransformerEncoderLayer, TransformerEncoder
from third_party.cgdetr.cg_detr.position_encoding import build_position_encoding
from third_party.cgdetr.cg_detr.misc import accuracy
import numpy as np
import copy

def inverse_sigmoid(x, eps=1e-3):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1/x2)

def init_weights(module):
    if isinstance(module, (nn.Linear, nn.Embedding)):
        module.weight.data.normal_(mean=0.0, std=0.02)
    elif isinstance(module, nn.LayerNorm):
        module.bias.data.zero_()
        module.weight.data.fill_(1.0)

    if isinstance(module, nn.Linear) and module.bias is not None:
        module.bias.data.zero_()

def find_nth(vid, underline, n):
    max_len = len(vid)
    start = vid.find(underline)
    while start >= 0 and n > 1:
        start = vid.find(underline, start+len(underline))
        n -= 1
    if start == -1:
        start = max_len
    return start

def element_wise_list_equal(listA, listB):
    res = []
    for a, b in zip(listA, listB):
        if a==b:
            res.append(True)
        else:
            res.append(False)
    return res

class CGDETR(nn.Module):
    """ CG DETR. """

    def __init__(self, transformer, position_embed, txt_position_embed, txt_dim, vid_dim,
                 num_queries, input_dropout, aux_loss=False,
                 contrastive_align_loss=False, contrastive_hdim=64,
                 max_v_l=75, span_loss_type="l1", use_txt_pos=False, n_input_proj=2, aud_dim=0, args=None):
        """ Initializes the model.
        Parameters:
            transformer: torch module of the transformer architecture. See transformer.py
            position_embed: torch module of the position_embedding, See position_encoding.py
            txt_position_embed: position_embedding for text
            txt_dim: int, text query input dimension
            vid_dim: int, video feature input dimension
            num_queries: number of object queries, ie detection slot. This is the maximal number of objects
                         CG-DETR can detect in a single video.
            aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
            contrastive_align_loss: If true, perform span - tokens contrastive learning
            contrastive_hdim: dimension used for projecting the embeddings before computing contrastive loss
            max_v_l: int, maximum #clips in videos
            span_loss_type: str, one of [l1, ce]
                l1: (center-x, width) regression.
                ce: (st_idx, ed_idx) classification.
            # foreground_thd: float, intersection over prediction >= foreground_thd: labeled as foreground
            # background_thd: float, intersection over prediction <= background_thd: labeled background
        """
        super().__init__()
        self.args=args
        self.num_queries = num_queries
        self.transformer = transformer
        self.position_embed = position_embed
        self.txt_position_embed = txt_position_embed
        hidden_dim = transformer.d_model
        self.span_loss_type = span_loss_type
        self.max_v_l = max_v_l
        span_pred_dim = 2 if span_loss_type == "l1" else max_v_l * 2
        self.span_embed = MLP(hidden_dim, hidden_dim, span_pred_dim, 3)
        self.class_embed = nn.Linear(hidden_dim, 2)  # 0: background, 1: foreground
        self.token_type_embeddings = nn.Embedding(2, hidden_dim)
        self.token_type_embeddings.apply(init_weights)
        self.use_txt_pos = use_txt_pos
        self.n_input_proj = n_input_proj
        self.query_embed = nn.Embedding(num_queries, 2)
        relu_args = [True] * 3
        relu_args[n_input_proj-1] = False
        self.input_txt_proj = nn.Sequential(*[
            LinearLayer(txt_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
        ][:n_input_proj])
        self.input_vid_proj = nn.Sequential(*[
            LinearLayer(vid_dim + aud_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
        ][:n_input_proj])
        self.contrastive_align_loss = contrastive_align_loss
        if contrastive_align_loss:
            self.contrastive_align_projection_query = nn.Linear(hidden_dim, contrastive_hdim)
            self.contrastive_align_projection_txt = nn.Linear(hidden_dim, contrastive_hdim)
            self.contrastive_align_projection_vid = nn.Linear(hidden_dim, contrastive_hdim)

        self.saliency_proj1 = nn.Linear(hidden_dim, hidden_dim)
        self.saliency_proj2 = nn.Linear(hidden_dim, hidden_dim)
        self.aux_loss = aux_loss
        self.hidden_dim = hidden_dim
        self.global_rep_token = torch.nn.Parameter(torch.randn(args.total_prompts, hidden_dim))
        self.global_rep_pos = torch.nn.Parameter(torch.randn(1, hidden_dim))
        self.moment_rep_token = torch.nn.Parameter(torch.randn(hidden_dim))
        self.moment_rep_pos = torch.nn.Parameter(torch.randn(hidden_dim))

        self.dummy_rep_token = torch.nn.Parameter(torch.randn(args.num_dummies, hidden_dim))
        self.dummy_rep_pos = torch.nn.Parameter(torch.randn(args.num_dummies, hidden_dim))
        normalize_before = False
        self.sent_rep_token = torch.nn.Parameter(torch.randn(hidden_dim))
        self.sent_rep_pos = torch.nn.Parameter(torch.randn(hidden_dim))

        self.txt_proj_linear = LinearLayer(txt_dim, hidden_dim, layer_norm=True)

        input_txt_sa_proj = TransformerEncoderLayer(hidden_dim, 8, self.args.dim_feedforward, 0.1, "prelu", normalize_before)
        txtproj_encoder_norm = nn.LayerNorm(hidden_dim) if normalize_before else None
        self.txtproj_encoder = TransformerEncoder(input_txt_sa_proj, args.dummy_layers, txtproj_encoder_norm)

        scls_encoder_layer = TransformerEncoderLayer(hidden_dim, 8, self.args.dim_feedforward, 0.1, "prelu", normalize_before)
        scls_encoder_norm = nn.LayerNorm(hidden_dim) if normalize_before else None
        self.scls_encoder = TransformerEncoder(scls_encoder_layer, args.sent_layers, scls_encoder_norm)

    def forward(self, src_txt, src_txt_mask, src_vid, src_vid_mask, vid=None, qid=None, src_aud=None, src_aud_mask=None, targets=None, prompt_token=None):
        """The forward expects two tensors:
               - src_txt: [batch_size, L_txt, D_txt]
               - src_txt_mask: [batch_size, L_txt], containing 0 on padded pixels,
                    will convert to 1 as padding later for transformer
               - src_vid: [batch_size, L_vid, D_vid]
               - src_vid_mask: [batch_size, L_vid], containing 0 on padded pixels,
                    will convert to 1 as padding later for transformer

            It returns a dict with the following elements:
               - "pred_spans": The normalized boxes coordinates for all queries, represented as
                               (center_x, width). These values are normalized in [0, 1],
                               relative to the size of each individual image (disregarding possible padding).
                               See PostProcess for information on how to retrieve the unnormalized bounding box.
               - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
                                dictionnaries containing the two above keys for each decoder layer.
        """

   
        ## For discovering real negative samples
        device = src_txt_mask.device
        # import pdb; pdb.set_trace()
        # if vid is not None: ## for demo (run_on_video/run.py)
        #     _count = [v.count('_') for v in vid]
        #     if self.args.dset_name == 'hl':
        #         _position_to_cut = [find_nth(v, '_', _count[i]-1) for i, v in enumerate(vid)]
        #         ori_vid = [v[:_position_to_cut[i]] for i, v in enumerate(vid)]
        #     else:
        if vid is not None:
            ori_vid = [v for v in vid]

        if src_aud is not None:
            src_vid = torch.cat([src_vid, src_aud], dim=2)

        # --------------------------------
        src_txt_list = []
        src_txt_mask_list = []
        for bs in range(src_txt.shape[0]):
            idx = int(src_txt_mask[bs].sum().item())
            src_txt_list.append(torch.cat((src_txt[bs, :idx, :], prompt_token[bs], src_txt[bs, idx:, :]), dim=0))
            src_txt_mask_list.append(torch.cat((src_txt_mask[bs, :idx], torch.ones(1, dtype=torch.bfloat16).to(device), src_txt_mask[bs, idx:]), dim=0))
        
        src_txt = torch.stack(src_txt_list, dim=0)
        src_txt_mask = torch.stack(src_txt_mask_list, dim=0)
        # --------------------------------

        # src_txt = torch.cat((src_txt, prompt_token), dim=1)
        # src_txt_mask = torch.cat((src_txt_mask, torch.zeros_like(prompt_token)), dim=1)

        src_vid = self.input_vid_proj(src_vid)  # [bsz,vlen,770] -> [bsz,vlen,256]
        src_txt = self.input_txt_proj(src_txt)  # [bsz,qlen,4096] -> [bsz,qlen, 256]

        src_vid = src_vid + self.token_type_embeddings(torch.full_like(src_vid_mask.long(), 1))  # TODO
        src_txt = src_txt + self.token_type_embeddings(torch.zeros_like(src_txt_mask.long()))

        # 
        pos_vid = self.position_embed(src_vid, src_vid_mask).type(torch.bfloat16)   # (bsz, L_vid, d)
        pos_txt = self.txt_position_embed(src_txt) if self.use_txt_pos else torch.zeros_like(src_txt).type(torch.bfloat16)  # (bsz, L_txt, d)

        ### insert dummy token in front of txt
        txt_dummy = self.dummy_rep_token.reshape([1, self.args.num_dummies, self.hidden_dim]).repeat(src_txt.shape[0], 1, 1) # [bsz, 45, 256]
        src_txt_dummy = torch.cat([txt_dummy, src_txt], dim=1)   # [bsz, L_txt+45, 256]
        mask_txt = torch.tensor([[True] * self.args.num_dummies]).to(src_txt_mask.device).repeat(src_txt_mask.shape[0], 1) 
        src_txt_mask_dummy = torch.cat([mask_txt, src_txt_mask], dim=1)  # [bsz, L_txt+45]

        pos_dummy = self.dummy_rep_pos.reshape([1, self.args.num_dummies, self.hidden_dim]).repeat(pos_txt.shape[0], 1, 1).type(torch.bfloat16)
        pos_txt_dummy = torch.cat([pos_dummy, pos_txt], dim=1)
        src_txt_dummy = src_txt_dummy.permute(1, 0, 2)   # (L, batch_size, d)
        pos_txt_dummy = pos_txt_dummy.permute(1, 0, 2)   # (L, batch_size, d)

        memory = self.txtproj_encoder(src_txt_dummy, src_key_padding_mask=~(src_txt_mask_dummy.bool()), pos=pos_txt_dummy)  # (L, batch_size, d)
        dummy_token = memory[:self.args.num_dummies].permute(1, 0, 2)
        pos_txt_dummy = pos_txt_dummy.permute(1, 0, 2)  # (L, batch_size, d)

        src_txt_dummy = torch.cat([dummy_token, src_txt], dim=1)
        mask_txt_dummy = torch.tensor([[True]*self.args.num_dummies]).to(src_txt_mask.device).repeat(src_txt_mask.shape[0], 1)
        src_txt_mask_dummy = torch.cat([mask_txt_dummy, src_txt_mask], dim=1)

        # Input : Concat video, dummy, txt
        src = torch.cat([src_vid, src_txt_dummy], dim=1)  # (bsz, L_vid+L_txt, d)
        mask = torch.cat([src_vid_mask, src_txt_mask_dummy], dim=1).bool()  # (bsz, L_vid+L_txt)
        pos = torch.cat([pos_vid, pos_txt_dummy], dim=1)

        ### sentence token
        smask_ = torch.tensor([[True]]).to(mask.device).repeat(src_txt_mask.shape[0], 1)
        smask = torch.cat([smask_, src_txt_mask.bool()], dim=1)
        ssrc_ = self.sent_rep_token.reshape([1, 1, self.hidden_dim]).repeat(src_txt.shape[0], 1, 1)
        ssrc = torch.cat([ssrc_, src_txt], dim=1)
        spos_ = self.sent_rep_pos.reshape([1, 1, self.hidden_dim]).repeat(pos_txt.shape[0], 1, 1)
        spos = torch.cat([spos_, pos_txt], dim=1)
        ### dummy sentence token
        smaskd = torch.cat([smask_, mask_txt_dummy.bool()], dim=1)
        ssrcd = torch.cat([ssrc_, dummy_token], dim=1)
        sposd = torch.cat([spos_, pos_dummy], dim=1)

        if targets is not None: # train
            mmask_ = torch.tensor([[True]]).to(mask.device).repeat(src_vid_mask.shape[0], 1)
            mmask = torch.cat([mmask_, src_vid_mask.bool()], dim=1)                 # [bsz, L_vid+1]
            moment_mask_ = torch.clamp(targets["relevant_clips"], 0, 1).bool()
            moment_mask = torch.cat([mmask_, moment_mask_], dim=1)                  # [bsz, L_vid+1]
            # if moment_mask.shape[1] != 76:
            #     import pdb; pdb.set_trace()
            mmask = mmask * moment_mask

            msrc_ = self.moment_rep_token.reshape([1, 1, self.hidden_dim]).repeat(src_vid.shape[0], 1, 1)
            msrc = torch.cat([msrc_, src_vid], dim=1)
            mpos_ = self.moment_rep_pos.reshape([1, 1, self.hidden_dim]).repeat(pos_vid.shape[0], 1, 1)
            mpos = torch.cat([mpos_, pos_vid], dim=1)

            ### for Not moment token ####
            nmmask_ = torch.tensor([[True]]).to(mask.device).repeat(src_vid_mask.shape[0], 1)
            nmmask = torch.cat([nmmask_, src_vid_mask.bool()], dim=1)
            nmoment_mask_ = ~(torch.clamp(targets["relevant_clips"], 0, 1).bool())
            nmoment_mask = torch.cat([nmmask_, nmoment_mask_], dim=1)
            nmmask = nmmask * nmoment_mask

            nmsrc_ = self.moment_rep_token.reshape([1, 1, self.hidden_dim]).repeat(src_vid.shape[0], 1, 1)
            nmsrc = torch.cat([nmsrc_, src_vid], dim=1)
            nmpos_ = self.moment_rep_pos.reshape([1, 1, self.hidden_dim]).repeat(pos_vid.shape[0], 1, 1)
            nmpos = torch.cat([nmpos_, pos_vid], dim=1)
            ###########
        else:
            moment_mask_ = None

        # for t2vidavg sal token
        # import pdb; pdb.set_trace()
        vidsrc_ = torch.zeros((len(src_vid), 1, self.hidden_dim), dtype=torch.bfloat16).to(device)
        for i in range(len(src_vid)):
            vidsrc_[i] = src_vid[i][:src_vid_mask.sum(1)[i].long()].mean(0).clone().detach()

        video_length = src_vid.shape[1]
        if targets is not None: ## train
            ssrc = ssrc.permute(1, 0, 2)  # (L, batch_size, d)
            spos = spos.permute(1, 0, 2)  # (L, batch_size, d)
            smemory = self.scls_encoder(ssrc, src_key_padding_mask=~smask, pos=spos)  # (L, batch_size, d)
            sentence_txt, smemory_words = smemory[0], smemory[1:] # sentence_txt : (batch_size, d)

            ssrcd = ssrcd.permute(1, 0, 2)  # (L, batch_size, d)
            sposd = sposd.permute(1, 0, 2)  # (L, batch_size, d)
            smemoryd = self.scls_encoder(ssrcd, src_key_padding_mask=~smaskd, pos=sposd)  # (L, batch_size, d)
            sentence_dummy, smemory_words_dummy = smemoryd[0], smemoryd[1:]

            txt_dummy_proj = torch.cat([smemory_words_dummy, smemory_words], dim=0)

            # import pdb; pdb.set_trace()
            # print(src.dtype)
            hs, reference, memory, memory_global, attn_weights, memory_moment, nmmemory_moment, mmemory_frames, nmmemory_frames = self.transformer(src, ~mask, self.query_embed.weight, pos, video_length=video_length, moment_idx=targets["relevant_clips"], msrc=msrc, mpos=mpos, mmask=~mmask, nmsrc=nmsrc, nmpos=nmpos, nmmask=~nmmask,
                                                                                                                  ctxtoken=vidsrc_, gtoken=self.global_rep_token, gpos=self.global_rep_pos, vlen=src_vid_mask.sum(1).long())
            moment2txt_similarity = torch.matmul(mmemory_frames.permute(1, 0, 2), txt_dummy_proj.permute(1, 2, 0))
            nmoment2txt_similarity = torch.matmul(nmmemory_frames.permute(1, 0, 2), txt_dummy_proj.permute(1, 2, 0))
        else: ## inference
            sentence_dummy, sentence_txt, moment2txt_similarity, nmoment2txt_similarity = None, None, None, None
            hs, reference, memory, memory_global, attn_weights, memory_moment, nmmemory_moment, mmemory_frames, nmmemory_frames = self.transformer(src, ~mask, self.query_embed.weight, pos, video_length=video_length,
                                                                                                                  ctxtoken=vidsrc_, gtoken=self.global_rep_token, gpos=self.global_rep_pos, vlen=src_vid_mask.sum(1).long())
        outputs_class = self.class_embed(hs)  # (#layers, batch_size, #queries, #classes)
        reference_before_sigmoid = inverse_sigmoid(reference)
        tmp = self.span_embed(hs)
        outputs_coord = tmp + reference_before_sigmoid
        if self.span_loss_type == "l1":
            outputs_coord = outputs_coord.sigmoid()
        out = {'pred_logits': outputs_class[-1], 'pred_spans': outputs_coord[-1]}

        txt_mem = memory[:, src_vid.shape[1]:]  # (bsz, L_txt, d)
        vid_mem = memory[:, :src_vid.shape[1]]  # (bsz, L_vid, d)
        if self.contrastive_align_loss:
            proj_queries = F.normalize(self.contrastive_align_projection_query(hs), p=2, dim=-1)
            proj_txt_mem = F.normalize(self.contrastive_align_projection_txt(txt_mem), p=2, dim=-1)
            proj_vid_mem = F.normalize(self.contrastive_align_projection_vid(vid_mem), p=2, dim=-1)
            out.update(dict(
                proj_queries=proj_queries[-1],
                proj_txt_mem=proj_txt_mem,
                proj_vid_mem=proj_vid_mem
            ))

        if vid is not None: ## for demo (run_on_video/run.py)
            ### Neg Pairs ###
            neg_vid = ori_vid[1:] + ori_vid[:1]
            
            real_neg_mask = torch.Tensor(element_wise_list_equal(ori_vid, neg_vid)).to(src_txt_dummy.device)
            real_neg_mask = real_neg_mask.type(torch.bfloat16)

            real_neg_mask = real_neg_mask == False

            # import pdb; pdb.set_trace()
            if real_neg_mask.sum() != 0:

                src_txt_dummy_neg = torch.cat([src_txt_dummy[1:], src_txt_dummy[0:1]], dim=0)
                src_txt_mask_dummy_neg = torch.cat([src_txt_mask_dummy[1:], src_txt_mask_dummy[0:1]], dim=0)
                src_dummy_neg = torch.cat([src_vid, src_txt_dummy_neg], dim=1)
                mask_dummy_neg = torch.cat([src_vid_mask, src_txt_mask_dummy_neg], dim=1).bool()
                pos_neg = pos.clone()  # since it does not use actual content

                mask_dummy_neg = mask_dummy_neg[real_neg_mask]
                src_dummy_neg = src_dummy_neg[real_neg_mask]
                pos_neg = pos_neg[real_neg_mask]
                src_txt_mask_dummy_neg = src_txt_mask_dummy_neg[real_neg_mask]
                
                # import pdb; pdb.set_trace()
                _, _, memory_neg, memory_global_neg, attn_weights_neg, _, _, _, _ = self.transformer(src_dummy_neg, ~mask_dummy_neg, self.query_embed.weight, pos_neg, video_length=video_length,
                                                                                               ctxtoken=vidsrc_[real_neg_mask], gtoken=self.global_rep_token, gpos=self.global_rep_pos, vlen=src_vid_mask[real_neg_mask].sum(1).long())
                vid_mem_neg = memory_neg[:, :src_vid.shape[1]]
                out["saliency_scores_neg"] = (torch.sum(self.saliency_proj1(vid_mem_neg) * self.saliency_proj2(memory_global_neg).unsqueeze(1), dim=-1) / np.sqrt(self.hidden_dim))
                out["src_txt_mask_neg"] = src_txt_mask_dummy_neg

                out["t2vattnvalues_neg"] = (attn_weights_neg[:, :, self.args.num_dummies:] * (src_txt_mask_dummy_neg[:, self.args.num_dummies:].unsqueeze(1).repeat(1, video_length, 1))).sum(2)
                out["t2vattnvalues_neg"] = torch.clamp(out["t2vattnvalues_neg"], 0, 1)
            else:
                out["saliency_scores_neg"] = None
                out["t2vattnvalues_neg"] = None
            out["real_neg_mask"] = real_neg_mask
        else:
            out["saliency_scores_neg"] = None
            out["t2vattnvalues_neg"] = None
            out["real_neg_mask"] = None


        out["saliency_scores"] = (torch.sum(self.saliency_proj1(vid_mem) * self.saliency_proj2(memory_global).unsqueeze(1), dim=-1) / np.sqrt(self.hidden_dim))
        out["memory_moment"] = memory_moment
        out["nmmemory_moment"] = nmmemory_moment

        ## sentence token embeeded with text / dummy
        out["sentence_txt"] = sentence_txt
        out["sentence_dummy"] = sentence_dummy
        out["moment2txt_similarity"] = moment2txt_similarity
        out["nmoment2txt_similarity"] = nmoment2txt_similarity
        out["cate_attn_weights"] = attn_weights
        out["moment_mask"] = moment_mask_
        out["txt_mask"] = src_txt_mask_dummy


        out["t2vattnvalues"] = (attn_weights[:,:,self.args.num_dummies:] * (src_txt_mask.unsqueeze(1).repeat(1, video_length, 1))).sum(2) # (batch_size, L_vid, L_txt) / (batch_size, L_txt)
        out["t2vattnvalues"] = torch.clamp(out["t2vattnvalues"], 0, 1)
        out["dummy_tokens"] = dummy_token
        out["global_rep_tokens"] = self.global_rep_token

        # import pdb; pdb.set_trace()
        if targets is not None:
            out["src_vid"] = mmemory_frames.permute(1, 0, 2) * moment_mask_.unsqueeze(2) + nmmemory_frames.permute(1, 0, 2) * (~(moment_mask_.unsqueeze(2).bool())).bfloat16()
        else:
            out["src_vid"] = None

        out["video_mask"] = src_vid_mask
        if self.aux_loss:
            # assert proj_queries and proj_txt_mem
            out['aux_outputs'] = [
                {'pred_logits': a, 'pred_spans': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
            if self.contrastive_align_loss:
                assert proj_queries is not None
                for idx, d in enumerate(proj_queries[:-1]):
                    out['aux_outputs'][idx].update(dict(proj_queries=d, proj_txt_mem=proj_txt_mem))
        return out

class SetCriterion(nn.Module):
    """ This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(self, matcher, weight_dict, eos_coef, losses, temperature, span_loss_type, max_v_l,
                 saliency_margin=1, use_matcher=True, args=None):
        """ Create the criterion.
        Parameters:
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
            temperature: float, temperature for NCE loss
            span_loss_type: str, [l1, ce]
            max_v_l: int,
            saliency_margin: float
        """
        super().__init__()
        self.args=args
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.losses = losses
        self.temperature = temperature
        self.span_loss_type = span_loss_type
        self.max_v_l = max_v_l
        self.saliency_margin = saliency_margin

        # foreground and background classification
        self.foreground_label = 0
        self.background_label = 1
        self.eos_coef = eos_coef
        empty_weight = torch.ones(2)
        empty_weight[-1] = self.eos_coef  # lower weight for background (index 1, foreground index 0)
        self.register_buffer('empty_weight', empty_weight)
        
        # for tvsum,
        self.use_matcher = use_matcher

        # moment sentence contrastive
        self.criterion = torch.nn.CrossEntropyLoss()#.to(self.args.device)
        self.l2_criterion = torch.nn.MSELoss()#.to(self.args.device)
        self.kld_criterion = torch.nn.KLDivLoss(reduction='none')#.to(self.args.device)
        self.bce_criterion = nn.BCELoss(reduction='none')

    def loss_spans(self, outputs, targets, indices):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
           targets dicts must contain the key "spans" containing a tensor of dim [nb_tgt_spans, 2]
           The target spans are expected in format (center_x, w), normalized by the image size.
        """
        assert 'pred_spans' in outputs
        targets = targets["span_labels"]
        idx = self._get_src_permutation_idx(indices)
        src_spans = outputs['pred_spans'][idx]  # (#spans, max_v_l * 2)
        tgt_spans = torch.cat([t['spans'][i] for t, (_, i) in zip(targets, indices)], dim=0)  # (#spans, 2)
        if self.span_loss_type == "l1":
            loss_span = F.l1_loss(src_spans, tgt_spans, reduction='none')
            loss_giou = 1 - torch.diag(generalized_temporal_iou(span_cxw_to_xx(src_spans), span_cxw_to_xx(tgt_spans)))
        else:  # ce
            n_spans = src_spans.shape[0]
            src_spans = src_spans.view(n_spans, 2, self.max_v_l).transpose(1, 2)
            loss_span = F.cross_entropy(src_spans, tgt_spans, reduction='none')
            loss_giou = loss_span.new_zeros([1])

        losses = {}
        losses['loss_span'] = loss_span.mean()
        losses['loss_giou'] = loss_giou.mean()
        return losses

    def loss_labels(self, outputs, targets, indices, log=True):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        # TODO add foreground and background classifier.  use all non-matched as background.
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']  # (batch_size, #queries, #classes=2)
        # idx is a tuple of two 1D tensors (batch_idx, src_idx), of the same length == #objects in batch
        idx = self._get_src_permutation_idx(indices)
        target_classes = torch.full(src_logits.shape[:2], self.background_label,
                                    dtype=torch.int64, device=src_logits.device)  # (batch_size, #queries)
        target_classes[idx] = self.foreground_label

        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduction="none")
        losses = {'loss_label': loss_ce.mean()}

        if log:
            # TODO this should probably be a separate loss, not hacked in this one here
            losses['class_error'] = 100 - accuracy(src_logits[idx], self.foreground_label)[0]
        return losses

    def loss_saliency(self, outputs, targets, indices, log=True):
        """higher scores for positive clips"""
        if "saliency_pos_labels" not in targets:
            return {"loss_saliency": 0}

        # Neg pair loss
        if outputs["saliency_scores_neg"] is not None: ## When batch size is not 1 (negative pair exists)
            vid_token_mask = outputs["video_mask"]
            real_neg_mask = outputs["real_neg_mask"]
            saliency_scores_neg = outputs["saliency_scores_neg"].clone()  # (N, L)
            loss_neg_pair = (- torch.log(1. - torch.sigmoid(saliency_scores_neg)) * (vid_token_mask[real_neg_mask])).sum(dim=1).mean()

            saliency_scores = outputs["saliency_scores"].clone()  # (N, L)
            saliency_contrast_label = targets["saliency_all_labels"]

            # real neg
            realneg_saliency_scores = torch.cat([saliency_scores[real_neg_mask], saliency_scores_neg], dim=1)
            realneg_saliency_contrast_label = torch.cat([saliency_contrast_label[real_neg_mask], torch.zeros_like(saliency_contrast_label)[real_neg_mask]], dim=1)
            realneg_vid_token_mask = vid_token_mask[real_neg_mask].repeat([1, 2])
            realneg_saliency_scores = realneg_vid_token_mask * realneg_saliency_scores + (1. - realneg_vid_token_mask) * -1e+3

            tau = 0.5
            loss_rank_contrastive = 0.
            for rand_idx in range(1, 12):
                drop_mask = ~(realneg_saliency_contrast_label > 100)  # no drop
                pos_mask = (realneg_saliency_contrast_label >= rand_idx)  # positive when equal or higher than rand_idx
                if torch.sum(pos_mask) == 0:  # no positive sample
                    continue
                else:
                    batch_drop_mask = torch.sum(pos_mask, dim=1) > 0  # negative sample indicator

                # drop higher ranks
                cur_saliency_scores = realneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
                # numerical stability
                logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
                # softmax
                exp_logits = torch.exp(logits)
                log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)

                mean_log_prob_pos = (pos_mask * log_prob * realneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
                loss = - mean_log_prob_pos * batch_drop_mask
                loss_rank_contrastive = loss_rank_contrastive + loss.mean()
            loss_rank_contrastive = loss_rank_contrastive / 12

            false_neg_mask = ~(real_neg_mask)
            if false_neg_mask.sum() != 0:
                if false_neg_mask.sum() == 1:
                    falseneg_saliency_scores = saliency_scores[false_neg_mask].unsqueeze(0)
                    falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask].unsqueeze(0)
                    falseneg_vid_token_mask = vid_token_mask[false_neg_mask].unsqueeze(0)
                    falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3
                else:
                    falseneg_saliency_scores = saliency_scores[false_neg_mask]
                    falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask]
                    falseneg_vid_token_mask = vid_token_mask[false_neg_mask]
                    falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3

                tau = 0.5
                falseneg_loss_rank_contrastive = 0.
                for rand_idx in range(1, 12):
                    drop_mask = ~(falseneg_saliency_contrast_label > 100)  # no drop
                    pos_mask = (falseneg_saliency_contrast_label >= rand_idx)  # positive when equal or higher than rand_idx
                    if torch.sum(pos_mask) == 0:  # no positive sample
                        continue
                    else:
                        batch_drop_mask = torch.sum(pos_mask, dim=1) > 0  # negative sample indicator

                    # drop higher ranks
                    cur_saliency_scores = falseneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
                    # numerical stability
                    logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
                    # softmax
                    exp_logits = torch.exp(logits)
                    log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)

                    mean_log_prob_pos = (pos_mask * log_prob * falseneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
                    loss = - mean_log_prob_pos * batch_drop_mask
                    falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive + loss.mean()
                falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive / 12
                loss_rank_contrastive += falseneg_loss_rank_contrastive

            saliency_scores = outputs["saliency_scores"]  # (N, L)
            pos_indices = targets["saliency_pos_labels"]  # (N, #pairs)
            neg_indices = targets["saliency_neg_labels"]  # (N, #pairs)
            num_pairs = pos_indices.shape[1]  # typically 2 or 4
            batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
            pos_scores = torch.stack(
                [saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            neg_scores = torch.stack(
                [saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            loss_saliency = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
                            / (len(pos_scores) * num_pairs) * 2  # * 2 to keep the loss the same scale

            # if self.args.dset_name in ['youtube_uni']:
            #     loss_saliency = loss_saliency + loss_rank_contrastive + loss_neg_pair * 0.
            # else:
            loss_saliency = loss_saliency + loss_rank_contrastive + loss_neg_pair
                
            ########### Saliency loss to t2v attn weights ##############
            """higher scores for positive clips"""
            vid_token_mask = outputs["video_mask"]
            # Neg pair loss

            if outputs["t2vattnvalues_neg"] is not None:
                saliency_scores_neg = outputs["t2vattnvalues_neg"].clone()  # (N, L)
                loss_neg_pair_attn = (- torch.log(1. - saliency_scores_neg) * (vid_token_mask[real_neg_mask])).sum(dim=1).mean()

            saliency_scores = outputs["t2vattnvalues"].clone()  # (N, L)
            saliency_contrast_label = targets["saliency_all_labels"]

            # real neg
            realneg_saliency_scores = torch.cat([saliency_scores[real_neg_mask], saliency_scores_neg], dim=1)
            realneg_saliency_contrast_label = torch.cat(
                [saliency_contrast_label[real_neg_mask], torch.zeros_like(saliency_contrast_label)[real_neg_mask]], dim=1)
            realneg_vid_token_mask = vid_token_mask[real_neg_mask].repeat([1, 2])
            realneg_saliency_scores = realneg_vid_token_mask * realneg_saliency_scores + (
                        1. - realneg_vid_token_mask) * -1e+3

            tau = 0.5
            loss_rank_contrastive_attn = 0.
            for rand_idx in range(1, 12):
                drop_mask = ~(realneg_saliency_contrast_label > 100)  # no drop
                pos_mask = (realneg_saliency_contrast_label >= rand_idx)  # positive when equal or higher than rand_idx
                if torch.sum(pos_mask) == 0:  # no positive sample
                    continue
                else:
                    batch_drop_mask = torch.sum(pos_mask, dim=1) > 0  # negative sample indicator

                # drop higher ranks
                cur_saliency_scores = realneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
                # numerical stability
                logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
                # softmax
                exp_logits = torch.exp(logits)
                log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)

                mean_log_prob_pos = (pos_mask * log_prob * realneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
                loss = - mean_log_prob_pos * batch_drop_mask
                loss_rank_contrastive_attn = loss_rank_contrastive_attn + loss.mean()
            loss_rank_contrastive_attn = loss_rank_contrastive_attn / 12

            false_neg_mask = ~(real_neg_mask)
            if false_neg_mask.sum() != 0:
                if false_neg_mask.sum() == 1:
                    falseneg_saliency_scores = saliency_scores[false_neg_mask].unsqueeze(0)
                    falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask].unsqueeze(0)
                    falseneg_vid_token_mask = vid_token_mask[false_neg_mask].unsqueeze(0)
                    falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3
                else:
                    falseneg_saliency_scores = saliency_scores[false_neg_mask]
                    falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask]
                    falseneg_vid_token_mask = vid_token_mask[false_neg_mask]
                    falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3

                tau = 0.5
                falseneg_loss_rank_contrastive = 0.
                for rand_idx in range(1, 12):
                    drop_mask = ~(falseneg_saliency_contrast_label > 100)  # no drop
                    pos_mask = (falseneg_saliency_contrast_label >= rand_idx)  # positive when equal or higher than rand_idx
                    if torch.sum(pos_mask) == 0:  # no positive sample
                        continue
                    else:
                        batch_drop_mask = torch.sum(pos_mask, dim=1) > 0  # negative sample indicator

                    # drop higher ranks
                    cur_saliency_scores = falseneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
                    # numerical stability
                    logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
                    # softmax
                    exp_logits = torch.exp(logits)
                    log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)

                    mean_log_prob_pos = (pos_mask * log_prob * falseneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
                    loss = - mean_log_prob_pos * batch_drop_mask
                    falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive + loss.mean()
                falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive / 12
                loss_rank_contrastive += falseneg_loss_rank_contrastive

            saliency_scores = outputs["t2vattnvalues"]  # (N, L)
            pos_indices = targets["saliency_pos_labels"]  # (N, #pairs)
            neg_indices = targets["saliency_neg_labels"]  # (N, #pairs)
            num_pairs = pos_indices.shape[1]  # typically 2 or 4
            batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
            pos_scores = torch.stack(
                [saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            neg_scores = torch.stack(
                [saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            loss_saliency_attn = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
                            / (len(pos_scores) * num_pairs) * 2  # * 2 to keep the loss the same scale

            saliency_binary_label = torch.clamp(targets["saliency_all_labels"], 0, 1)
            logits = saliency_scores.reshape(-1)
            labels_x = saliency_binary_label.reshape(-1)
            BCEcriterion = nn.BCELoss()
            bceloss = BCEcriterion(logits, labels_x)

            # if self.args.dset_name in ['youtube_uni']:
            #     loss_saliency_attn = loss_rank_contrastive_attn + bceloss + loss_neg_pair_attn * 0 + loss_saliency_attn
            # else:
            loss_saliency_attn = loss_rank_contrastive_attn + bceloss + loss_neg_pair_attn + loss_saliency_attn

            loss_saliency += (loss_saliency_attn * self.args.lw_wattn)
            
        else: ## when batch size == 1
            vid_token_mask = outputs["video_mask"]
            saliency_scores = outputs["saliency_scores"].clone()  # (N, L)
            saliency_contrast_label = targets["saliency_all_labels"]

            saliency_scores = vid_token_mask * saliency_scores + (1. - vid_token_mask) * -1e+3

            tau = 0.5
            loss_rank_contrastive = 0.
            for rand_idx in range(1, 12):
                drop_mask = ~(saliency_contrast_label > 100)  # no drop
                pos_mask = (saliency_contrast_label >= rand_idx)  # positive when equal or higher than rand_idx
                if torch.sum(pos_mask) == 0:  # no positive sample
                    continue
                else:
                    batch_drop_mask = torch.sum(pos_mask, dim=1) > 0  # negative sample indicator

                # drop higher ranks
                cur_saliency_scores = saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
                # numerical stability
                logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
                # softmax
                exp_logits = torch.exp(logits)
                log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)

                mean_log_prob_pos = (pos_mask * log_prob * vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
                loss = - mean_log_prob_pos * batch_drop_mask
                loss_rank_contrastive = loss_rank_contrastive + loss.mean()
            loss_rank_contrastive = loss_rank_contrastive / 12

            saliency_scores = outputs["saliency_scores"]  # (N, L)
            pos_indices = targets["saliency_pos_labels"]  # (N, #pairs)
            neg_indices = targets["saliency_neg_labels"]  # (N, #pairs)
            num_pairs = pos_indices.shape[1]  # typically 2 or 4
            batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
            pos_scores = torch.stack(
                [saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            neg_scores = torch.stack(
                [saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            loss_saliency = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
                            / (len(pos_scores) * num_pairs) * 2  # * 2 to keep the loss the same scale

            loss_saliency = loss_saliency + loss_rank_contrastive
            ########### Saliency loss to t2v attn weights ##############
            """higher scores for positive clips"""
            vid_token_mask = outputs["video_mask"]
            saliency_scores = outputs["t2vattnvalues"].clone()  # (N, L)
            saliency_contrast_label = targets["saliency_all_labels"]

            saliency_scores = vid_token_mask * saliency_scores + (1. - vid_token_mask) * -1e+3

            tau = 0.5
            loss_rank_contrastive = 0.
            for rand_idx in range(1, 12):
                drop_mask = ~(saliency_contrast_label > 100)  # no drop
                pos_mask = (saliency_contrast_label >= rand_idx)  # positive when equal or higher than rand_idx
                if torch.sum(pos_mask) == 0:  # no positive sample
                    continue
                else:
                    batch_drop_mask = torch.sum(pos_mask, dim=1) > 0  # negative sample indicator

                # drop higher ranks
                cur_saliency_scores = saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
                # numerical stability
                logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
                # softmax
                exp_logits = torch.exp(logits)
                log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)

                mean_log_prob_pos = (pos_mask * log_prob * vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
                loss = - mean_log_prob_pos * batch_drop_mask
                loss_rank_contrastive = loss_rank_contrastive + loss.mean()
            loss_rank_contrastive_attn = loss_rank_contrastive / 12

            saliency_scores = outputs["t2vattnvalues"]  # (N, L)
            pos_indices = targets["saliency_pos_labels"]  # (N, #pairs)
            neg_indices = targets["saliency_neg_labels"]  # (N, #pairs)
            num_pairs = pos_indices.shape[1]  # typically 2 or 4
            batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
            pos_scores = torch.stack(
                [saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            neg_scores = torch.stack(
                [saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
            loss_saliency_attn = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
                            / (len(pos_scores) * num_pairs) * 2  # * 2 to keep the loss the same scale
            saliency_binary_label = torch.clamp(targets["saliency_all_labels"], 0, 1)
            logits = saliency_scores.reshape(-1)
            labels_x = saliency_binary_label.reshape(-1)
            BCEcriterion = nn.BCELoss()
            bceloss = BCEcriterion(logits, labels_x)

            loss_saliency_attn = loss_rank_contrastive_attn + bceloss + loss_saliency_attn
            loss_saliency += (loss_saliency_attn * self.args.lw_wattn)
        return {"loss_saliency": loss_saliency}

    def loss_contrastive_moment_sentence(self, outputs, targets, indices, log=True):
        if outputs["memory_moment"] is not None:
            moment_token = outputs["memory_moment"]
            nmmemory_moment = outputs["nmmemory_moment"]
            sentence_token = outputs["sentence_txt"].squeeze(1)
            sentence_dummy = outputs["sentence_dummy"].squeeze(1) # b, 1, d

            moment_logits = F.normalize(moment_token, dim=1)
            nmoment_logits = F.normalize(nmmemory_moment, dim=1)
            sentence_logits = F.normalize(sentence_token, dim=1)
            dummy_logits = F.normalize(sentence_dummy, dim=1)
            # import pdb; pdb.set_trace()

            similarity_matrix = torch.matmul(moment_logits, sentence_logits.T) # B B
            nsimilarity_matrix = torch.matmul(nmoment_logits, sentence_logits.T) # B B
            similarity_matrix = torch.cat([similarity_matrix, nsimilarity_matrix], dim=1)
            labels = torch.eye(similarity_matrix.shape[0]).to(sentence_logits.device)
            nlabels = torch.zeros_like(nsimilarity_matrix).to(sentence_logits.device)
            labels = torch.cat([labels, nlabels], dim=1).max(dim=1)[1]

            loss_ms_align = self.criterion(similarity_matrix, labels)

            dummy_similarity_matrix = torch.matmul(moment_logits, dummy_logits.T)
            dummy_nsimilarity_matrix = torch.matmul(nmoment_logits, dummy_logits.T)
            dummy_similarity_matrix = torch.cat([dummy_similarity_matrix, dummy_nsimilarity_matrix], dim=1)
            dummy_labels = (~(torch.eye(similarity_matrix.shape[0]).to(sentence_logits.device).bool())).float()
            dummy_nlabels = torch.ones_like(nsimilarity_matrix).to(sentence_logits.device)
            dummy_labels = torch.cat([dummy_labels, dummy_nlabels], dim=1).max(dim=1)[1]

            dummy_loss_ms_align = self.criterion(dummy_similarity_matrix, dummy_labels)
            loss_ms_align += dummy_loss_ms_align
            video_mask = outputs['video_mask']
            src_vid = outputs['src_vid']  # [bsz, L_vid, D_vid]
            moment_mask_ = torch.clamp(targets["relevant_clips"], 0, 1)

            momtokcls_pred = torch.matmul(moment_token.unsqueeze(1), src_vid.permute(0, 2, 1))  # bsz 1 L_vid
            momtokcls_label = moment_mask_
            momtokcls_logit = torch.sigmoid(momtokcls_pred)
            loss_ms_align += (self.bce_criterion(momtokcls_logit.reshape(-1), momtokcls_label.reshape(-1)) * video_mask.reshape(-1)).mean()

        else:
            loss_ms_align = 0.
        return {"loss_ms_align": loss_ms_align}
        #

    def loss_moment2txt_sim_distill(self, outputs, targets, indices, log=True):
        if outputs["moment2txt_similarity"] is not None:
            moment2txt_similarity = outputs["moment2txt_similarity"]  # bsz L_clip 22
            moment_mask = outputs["moment_mask"].int() # bsz L_clip 1
            txt_mask = outputs["txt_mask"].unsqueeze(1).repeat(1, outputs["cate_attn_weights"].size(1), 1)  # bsz l_t

            attn_weights = outputs["cate_attn_weights"] # bsz L_clip 22
            b, L_vid, L_txt = attn_weights.size()
            loss_distill = self.kld_criterion(
                torch.log(attn_weights + 1e-6).reshape(b * L_vid, -1),
                torch.softmax(moment2txt_similarity, dim=-1).clone().detach().reshape(b * L_vid, -1)).mean(1) * moment_mask.reshape(-1)
            loss_distill = loss_distill.sum() / moment_mask.sum()

        else:
            loss_distill = 0.
        return {"loss_distill": loss_distill}

    def loss_orthogonal_dummy(self, outputs, targets, indices, log=True):
        dummy_tokens = outputs["dummy_tokens"]  # (n_dum, dim)
        if dummy_tokens.size(1) != 1:
            dummy_tokens_norm = dummy_tokens / dummy_tokens.norm(dim=2)[:, :, None]
            dummy_tokens_sim = torch.matmul(dummy_tokens_norm, dummy_tokens_norm.permute(0, 2, 1).detach())
            for i in range(len(dummy_tokens_sim)):
                dummy_tokens_sim[i].fill_diagonal_(0)
            loss_dummy_ortho = dummy_tokens_sim.abs().mean()
        else:
            loss_dummy_ortho=0.
        global_tokens = outputs["global_rep_tokens"]

        global_tokens_norm = global_tokens / global_tokens.norm(dim=1)[:, None]
        global_tokens_sim = torch.matmul(global_tokens_norm, global_tokens_norm.permute(1, 0).detach())
        for i in range(len(global_tokens_sim)):
            global_tokens_sim.fill_diagonal_(0)
        loss_dummy_ortho += global_tokens_sim.abs().mean()
        return {"loss_orthogonal_dummy": loss_dummy_ortho}

    def loss_contrastive_align(self, outputs, targets, indices, log=True):
        """encourage higher scores between matched query span and input text"""
        normalized_text_embed = outputs["proj_txt_mem"]  # (bsz, #tokens, d)  text tokens
        normalized_img_embed = outputs["proj_queries"]  # (bsz, #queries, d)
        logits = torch.einsum(
            "bmd,bnd->bmn", normalized_img_embed, normalized_text_embed)  # (bsz, #queries, #tokens)
        logits = logits.sum(2) / self.temperature  # (bsz, #queries)
        idx = self._get_src_permutation_idx(indices)
        positive_map = torch.zeros_like(logits, dtype=torch.bool)
        positive_map[idx] = True
        positive_logits = logits.masked_fill(~positive_map, 0)

        pos_term = positive_logits.sum(1)  # (bsz, )
        num_pos = positive_map.sum(1)  # (bsz, )
        neg_term = logits.logsumexp(1)  # (bsz, )
        loss_nce = - pos_term / num_pos + neg_term  # (bsz, )
        losses = {"loss_contrastive_align": loss_nce.mean()}
        return losses

    def loss_contrastive_align_vid_txt(self, outputs, targets, indices, log=True):
        """encourage higher scores between matched query span and input text"""
        normalized_text_embed = outputs["proj_txt_mem"]  # (bsz, #tokens, d)  text tokens
        normalized_img_embed = outputs["proj_queries"]  # (bsz, #queries, d)
        logits = torch.einsum(
            "bmd,bnd->bmn", normalized_img_embed, normalized_text_embed)  # (bsz, #queries, #tokens)
        logits = logits.sum(2) / self.temperature  # (bsz, #queries)
        idx = self._get_src_permutation_idx(indices)
        positive_map = torch.zeros_like(logits, dtype=torch.bool)
        positive_map[idx] = True
        positive_logits = logits.masked_fill(~positive_map, 0)

        pos_term = positive_logits.sum(1)  # (bsz, )
        num_pos = positive_map.sum(1)  # (bsz, )
        neg_term = logits.logsumexp(1)  # (bsz, )
        loss_nce = - pos_term / num_pos + neg_term  # (bsz, )
        losses = {"loss_contrastive_align": loss_nce.mean()}
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx  # two 1D tensors of the same length

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, **kwargs):
        loss_map = {
            "spans": self.loss_spans,
            "labels": self.loss_labels,
            "contrastive_align": self.loss_contrastive_align,
            "saliency": self.loss_saliency,
            "ms_align": self.loss_contrastive_moment_sentence,
            "distill": self.loss_moment2txt_sim_distill,
            "orthogonal_dummy":self.loss_orthogonal_dummy
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, **kwargs)

    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        # Retrieve the matching between the outputs of the last layer and the targets
        # list(tuples), each tuple is (pred_span_indices, tgt_span_indices)

        # only for HL, do not use matcher
        if self.use_matcher:
            # import pdb; pdb.set_trace()
            indices = self.matcher(outputs_without_aux, targets)
            losses_target = self.losses
        else:
            indices = None
            losses_target = ["saliency"]

        # Compute all the requested losses
        losses = {}
        for loss in losses_target:
            losses.update(self.get_loss(loss, outputs, targets, indices))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                # indices = self.matcher(aux_outputs, targets)
                if self.use_matcher:
                    indices = self.matcher(aux_outputs, targets)
                    losses_target = self.losses
                else:
                    indices = None
                    losses_target = ["saliency", "ms_align", "distill", "orthogonal_dummy"]
                for loss in losses_target:
                    if "saliency" == loss:  # skip as it is only in the top layer
                        continue
                    if "ms_align" == loss:
                        continue
                    if "distill" == loss:
                        continue
                    if "orthogonal_dummy" == loss:
                        continue
                    kwargs = {}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)
        return losses


class MLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x

class LinearLayer(nn.Module):
    """linear layer configurable with layer normalization, dropout, ReLU."""

    def __init__(self, input_dim, output_dim, layer_norm=True, dropout=0.1, relu=True):
        super(LinearLayer, self).__init__()
        self.relu = relu
        self.layer_norm = layer_norm
        if layer_norm:
            self.LayerNorm = nn.LayerNorm(input_dim)
        layers = [
            nn.Dropout(dropout),
            nn.Linear(input_dim, output_dim)
        ]
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        """(N, L, D)"""

        if self.layer_norm:
            x = self.LayerNorm(x)
        x = self.net(x)
        if self.relu:
            x = F.relu(x, inplace=True)
        return x  # (N, L, D)

class CGDETRConfig:
    def __init__(self, dset_name='charadesSTA', eval_split_name='val', data_ratio=1.0,
                 results_root='results', exp_id=None, max_es_cnt=200, eval_epoch=5,
                 grad_clip=0.1, eval_untrained=False, resume_all=False, start_epoch=None,
                 max_q_l=-1, max_v_l=-1, clip_length=1, max_windows=5, train_path=None,
                 eval_path=None, no_norm_vfeat=False, no_norm_tfeat=False, v_feat_dirs=None,
                 t_feat_dir=None, v_feat_dim=770, t_feat_dim=4096, ctx_mode='video_tef',
                 position_embedding='sine', enc_layers=3, dec_layers=3, t2v_layers=2,
                 sent_layers=1, moment_layers=1, dummy_layers=2, dim_feedforward=1024,
                 hidden_dim=256, input_dropout=0.5, dropout=0.1, txt_drop_ratio=0,
                 use_txt_pos=False, nheads=8, num_queries=10, num_dummies=45,
                 total_prompts=10, num_prompts=1, pre_norm=False, n_input_proj=2,
                 contrastive_hdim=64, temperature=0.07, saliency_margin=0.2, aux_loss=True,
                 span_loss_type='l1', contrastive_align_loss=False, set_cost_span=10,
                 set_cost_giou=1, set_cost_class=4, lw_saliency=4, lw_wattn=1.0,
                 lw_ms_align=1.0, lw_distill=1.0, span_loss_coef=10, giou_loss_coef=1,
                 label_loss_coef=4, eos_coef=0.1, contrastive_align_loss_coef=0.02,
                 no_sort_results=False, max_before_nms=10, max_after_nms=10,
                 conf_thd=0.0, nms_thd=-1):
        
        self.dset_name = dset_name
        self.eval_split_name = eval_split_name
        self.data_ratio = data_ratio
        self.results_root = results_root
        self.exp_id = exp_id
        self.max_es_cnt = max_es_cnt
        self.eval_epoch = eval_epoch
        self.grad_clip = grad_clip
        self.eval_untrained = eval_untrained
        self.resume_all = resume_all
        self.start_epoch = start_epoch
        self.max_q_l = max_q_l
        self.max_v_l = max_v_l
        self.clip_length = clip_length
        self.max_windows = max_windows
        self.train_path = train_path
        self.eval_path = eval_path
        self.no_norm_vfeat = no_norm_vfeat
        self.no_norm_tfeat = no_norm_tfeat
        self.v_feat_dirs = v_feat_dirs
        self.t_feat_dir = t_feat_dir
        self.v_feat_dim = v_feat_dim
        self.t_feat_dim = t_feat_dim
        self.ctx_mode = ctx_mode
        self.position_embedding = position_embedding
        self.enc_layers = enc_layers
        self.dec_layers = dec_layers
        self.t2v_layers = t2v_layers
        self.sent_layers = sent_layers
        self.moment_layers = moment_layers
        self.dummy_layers = dummy_layers
        self.dim_feedforward = dim_feedforward
        self.hidden_dim = hidden_dim
        self.input_dropout = input_dropout
        self.dropout = dropout
        self.txt_drop_ratio = txt_drop_ratio
        self.use_txt_pos = use_txt_pos
        self.nheads = nheads
        self.num_queries = num_queries
        self.num_dummies = num_dummies
        self.total_prompts = total_prompts
        self.num_prompts = num_prompts
        self.pre_norm = pre_norm
        self.n_input_proj = n_input_proj
        self.contrastive_hdim = contrastive_hdim
        self.temperature = temperature
        self.saliency_margin = saliency_margin
        self.aux_loss = aux_loss
        self.span_loss_type = span_loss_type
        self.contrastive_align_loss = contrastive_align_loss
        self.set_cost_span = set_cost_span
        self.set_cost_giou = set_cost_giou
        self.set_cost_class = set_cost_class
        self.lw_saliency = lw_saliency
        self.lw_wattn = lw_wattn
        self.lw_ms_align = lw_ms_align
        self.lw_distill = lw_distill
        self.span_loss_coef = span_loss_coef
        self.giou_loss_coef = giou_loss_coef
        self.label_loss_coef = label_loss_coef
        self.eos_coef = eos_coef
        self.contrastive_align_loss_coef = contrastive_align_loss_coef
        self.no_sort_results = no_sort_results
        self.max_before_nms = max_before_nms
        self.max_after_nms = max_after_nms
        self.conf_thd = conf_thd
        self.nms_thd = nms_thd

def build_cgdetr_model():
    # device = torch.device(args.device)
    # import pdb; pdb.set_trace()
    args = CGDETRConfig()

    transformer = build_transformer(args)
    position_embedding, txt_position_embedding = build_position_encoding(args)

    # if args.a_feat_dir is None:
    model = CGDETR(
        transformer,
        position_embedding,
        txt_position_embedding,
        txt_dim=args.t_feat_dim,
        vid_dim=args.v_feat_dim,
        num_queries=args.num_queries,
        input_dropout=args.input_dropout,
        aux_loss=args.aux_loss,
        contrastive_align_loss=args.contrastive_align_loss,
        contrastive_hdim=args.contrastive_hdim,
        span_loss_type=args.span_loss_type,
        use_txt_pos=args.use_txt_pos,
        n_input_proj=args.n_input_proj,
        args=args
    )
    # else:
    #     model = CGDETR(
    #         transformer,
    #         position_embedding,
    #         txt_position_embedding,
    #         txt_dim=args.t_feat_dim,
    #         vid_dim=args.v_feat_dim,
    #         aud_dim=args.a_feat_dim,
    #         num_queries=args.num_queries,
    #         input_dropout=args.input_dropout,
    #         aux_loss=args.aux_loss,
    #         contrastive_align_loss=args.contrastive_align_loss,
    #         contrastive_hdim=args.contrastive_hdim,
    #         span_loss_type=args.span_loss_type,
    #         use_txt_pos=args.use_txt_pos,
    #         n_input_proj=args.n_input_proj,
    #         args=args
    #     )

    matcher = build_matcher(args)
    weight_dict = {"loss_span": args.span_loss_coef,
                   "loss_giou": args.giou_loss_coef,
                   "loss_label": args.label_loss_coef,
                   "loss_saliency": args.lw_saliency,
                   "loss_ms_align": args.lw_ms_align,
                   "loss_distill": args.lw_distill,
                   "loss_orthogonal_dummy":args.lw_distill}
    if args.contrastive_align_loss:
        weight_dict["loss_contrastive_align"] = args.contrastive_align_loss_coef

    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(args.dec_layers - 1):
            aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items() if k != "loss_saliency"})
        weight_dict.update(aux_weight_dict)

    losses = ['spans', 'labels', 'saliency', 'ms_align', 'distill', 'orthogonal_dummy']
    if args.contrastive_align_loss:
        losses += ["contrastive_align"]
        
    # For highlight detection datasets
    # use_matcher = not (args.dset_name in ['youtube_uni', 'tvsum'])
    use_matcher = True
        
    criterion = SetCriterion(
        matcher=matcher, weight_dict=weight_dict, losses=losses,
        eos_coef=args.eos_coef, temperature=args.temperature,
        span_loss_type=args.span_loss_type, max_v_l=args.max_v_l,
        saliency_margin=args.saliency_margin, use_matcher=use_matcher, args=args
    )
    # criterion.to(device)
    return model, criterion