File size: 63,870 Bytes
16dc4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
CG-DETR model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn
from third_party.cgdetr.cg_detr.span_utils import generalized_temporal_iou, span_cxw_to_xx
from third_party.cgdetr.cg_detr.matcher import build_matcher
from third_party.cgdetr.cg_detr.transformer import build_transformer, TransformerEncoderLayer, TransformerEncoder
from third_party.cgdetr.cg_detr.position_encoding import build_position_encoding
from third_party.cgdetr.cg_detr.misc import accuracy
import numpy as np
import copy
def inverse_sigmoid(x, eps=1e-3):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1/x2)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def find_nth(vid, underline, n):
max_len = len(vid)
start = vid.find(underline)
while start >= 0 and n > 1:
start = vid.find(underline, start+len(underline))
n -= 1
if start == -1:
start = max_len
return start
def element_wise_list_equal(listA, listB):
res = []
for a, b in zip(listA, listB):
if a==b:
res.append(True)
else:
res.append(False)
return res
class CGDETR(nn.Module):
""" CG DETR. """
def __init__(self, transformer, position_embed, txt_position_embed, txt_dim, vid_dim,
num_queries, input_dropout, aux_loss=False,
contrastive_align_loss=False, contrastive_hdim=64,
max_v_l=75, span_loss_type="l1", use_txt_pos=False, n_input_proj=2, aud_dim=0, args=None):
""" Initializes the model.
Parameters:
transformer: torch module of the transformer architecture. See transformer.py
position_embed: torch module of the position_embedding, See position_encoding.py
txt_position_embed: position_embedding for text
txt_dim: int, text query input dimension
vid_dim: int, video feature input dimension
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
CG-DETR can detect in a single video.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
contrastive_align_loss: If true, perform span - tokens contrastive learning
contrastive_hdim: dimension used for projecting the embeddings before computing contrastive loss
max_v_l: int, maximum #clips in videos
span_loss_type: str, one of [l1, ce]
l1: (center-x, width) regression.
ce: (st_idx, ed_idx) classification.
# foreground_thd: float, intersection over prediction >= foreground_thd: labeled as foreground
# background_thd: float, intersection over prediction <= background_thd: labeled background
"""
super().__init__()
self.args=args
self.num_queries = num_queries
self.transformer = transformer
self.position_embed = position_embed
self.txt_position_embed = txt_position_embed
hidden_dim = transformer.d_model
self.span_loss_type = span_loss_type
self.max_v_l = max_v_l
span_pred_dim = 2 if span_loss_type == "l1" else max_v_l * 2
self.span_embed = MLP(hidden_dim, hidden_dim, span_pred_dim, 3)
self.class_embed = nn.Linear(hidden_dim, 2) # 0: background, 1: foreground
self.token_type_embeddings = nn.Embedding(2, hidden_dim)
self.token_type_embeddings.apply(init_weights)
self.use_txt_pos = use_txt_pos
self.n_input_proj = n_input_proj
self.query_embed = nn.Embedding(num_queries, 2)
relu_args = [True] * 3
relu_args[n_input_proj-1] = False
self.input_txt_proj = nn.Sequential(*[
LinearLayer(txt_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
][:n_input_proj])
self.input_vid_proj = nn.Sequential(*[
LinearLayer(vid_dim + aud_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
][:n_input_proj])
self.contrastive_align_loss = contrastive_align_loss
if contrastive_align_loss:
self.contrastive_align_projection_query = nn.Linear(hidden_dim, contrastive_hdim)
self.contrastive_align_projection_txt = nn.Linear(hidden_dim, contrastive_hdim)
self.contrastive_align_projection_vid = nn.Linear(hidden_dim, contrastive_hdim)
self.saliency_proj1 = nn.Linear(hidden_dim, hidden_dim)
self.saliency_proj2 = nn.Linear(hidden_dim, hidden_dim)
self.aux_loss = aux_loss
self.hidden_dim = hidden_dim
self.global_rep_token = torch.nn.Parameter(torch.randn(args.total_prompts, hidden_dim))
self.global_rep_pos = torch.nn.Parameter(torch.randn(1, hidden_dim))
self.moment_rep_token = torch.nn.Parameter(torch.randn(hidden_dim))
self.moment_rep_pos = torch.nn.Parameter(torch.randn(hidden_dim))
self.dummy_rep_token = torch.nn.Parameter(torch.randn(args.num_dummies, hidden_dim))
self.dummy_rep_pos = torch.nn.Parameter(torch.randn(args.num_dummies, hidden_dim))
normalize_before = False
self.sent_rep_token = torch.nn.Parameter(torch.randn(hidden_dim))
self.sent_rep_pos = torch.nn.Parameter(torch.randn(hidden_dim))
self.txt_proj_linear = LinearLayer(txt_dim, hidden_dim, layer_norm=True)
input_txt_sa_proj = TransformerEncoderLayer(hidden_dim, 8, self.args.dim_feedforward, 0.1, "prelu", normalize_before)
txtproj_encoder_norm = nn.LayerNorm(hidden_dim) if normalize_before else None
self.txtproj_encoder = TransformerEncoder(input_txt_sa_proj, args.dummy_layers, txtproj_encoder_norm)
scls_encoder_layer = TransformerEncoderLayer(hidden_dim, 8, self.args.dim_feedforward, 0.1, "prelu", normalize_before)
scls_encoder_norm = nn.LayerNorm(hidden_dim) if normalize_before else None
self.scls_encoder = TransformerEncoder(scls_encoder_layer, args.sent_layers, scls_encoder_norm)
def forward(self, src_txt, src_txt_mask, src_vid, src_vid_mask, vid=None, qid=None, src_aud=None, src_aud_mask=None, targets=None, prompt_token=None):
"""The forward expects two tensors:
- src_txt: [batch_size, L_txt, D_txt]
- src_txt_mask: [batch_size, L_txt], containing 0 on padded pixels,
will convert to 1 as padding later for transformer
- src_vid: [batch_size, L_vid, D_vid]
- src_vid_mask: [batch_size, L_vid], containing 0 on padded pixels,
will convert to 1 as padding later for transformer
It returns a dict with the following elements:
- "pred_spans": The normalized boxes coordinates for all queries, represented as
(center_x, width). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
## For discovering real negative samples
device = src_txt_mask.device
# import pdb; pdb.set_trace()
# if vid is not None: ## for demo (run_on_video/run.py)
# _count = [v.count('_') for v in vid]
# if self.args.dset_name == 'hl':
# _position_to_cut = [find_nth(v, '_', _count[i]-1) for i, v in enumerate(vid)]
# ori_vid = [v[:_position_to_cut[i]] for i, v in enumerate(vid)]
# else:
if vid is not None:
ori_vid = [v for v in vid]
if src_aud is not None:
src_vid = torch.cat([src_vid, src_aud], dim=2)
# --------------------------------
src_txt_list = []
src_txt_mask_list = []
for bs in range(src_txt.shape[0]):
idx = int(src_txt_mask[bs].sum().item())
src_txt_list.append(torch.cat((src_txt[bs, :idx, :], prompt_token[bs], src_txt[bs, idx:, :]), dim=0))
src_txt_mask_list.append(torch.cat((src_txt_mask[bs, :idx], torch.ones(1, dtype=torch.bfloat16).to(device), src_txt_mask[bs, idx:]), dim=0))
src_txt = torch.stack(src_txt_list, dim=0)
src_txt_mask = torch.stack(src_txt_mask_list, dim=0)
# --------------------------------
# src_txt = torch.cat((src_txt, prompt_token), dim=1)
# src_txt_mask = torch.cat((src_txt_mask, torch.zeros_like(prompt_token)), dim=1)
src_vid = self.input_vid_proj(src_vid) # [bsz,vlen,770] -> [bsz,vlen,256]
src_txt = self.input_txt_proj(src_txt) # [bsz,qlen,4096] -> [bsz,qlen, 256]
src_vid = src_vid + self.token_type_embeddings(torch.full_like(src_vid_mask.long(), 1)) # TODO
src_txt = src_txt + self.token_type_embeddings(torch.zeros_like(src_txt_mask.long()))
#
pos_vid = self.position_embed(src_vid, src_vid_mask).type(torch.bfloat16) # (bsz, L_vid, d)
pos_txt = self.txt_position_embed(src_txt) if self.use_txt_pos else torch.zeros_like(src_txt).type(torch.bfloat16) # (bsz, L_txt, d)
### insert dummy token in front of txt
txt_dummy = self.dummy_rep_token.reshape([1, self.args.num_dummies, self.hidden_dim]).repeat(src_txt.shape[0], 1, 1) # [bsz, 45, 256]
src_txt_dummy = torch.cat([txt_dummy, src_txt], dim=1) # [bsz, L_txt+45, 256]
mask_txt = torch.tensor([[True] * self.args.num_dummies]).to(src_txt_mask.device).repeat(src_txt_mask.shape[0], 1)
src_txt_mask_dummy = torch.cat([mask_txt, src_txt_mask], dim=1) # [bsz, L_txt+45]
pos_dummy = self.dummy_rep_pos.reshape([1, self.args.num_dummies, self.hidden_dim]).repeat(pos_txt.shape[0], 1, 1).type(torch.bfloat16)
pos_txt_dummy = torch.cat([pos_dummy, pos_txt], dim=1)
src_txt_dummy = src_txt_dummy.permute(1, 0, 2) # (L, batch_size, d)
pos_txt_dummy = pos_txt_dummy.permute(1, 0, 2) # (L, batch_size, d)
memory = self.txtproj_encoder(src_txt_dummy, src_key_padding_mask=~(src_txt_mask_dummy.bool()), pos=pos_txt_dummy) # (L, batch_size, d)
dummy_token = memory[:self.args.num_dummies].permute(1, 0, 2)
pos_txt_dummy = pos_txt_dummy.permute(1, 0, 2) # (L, batch_size, d)
src_txt_dummy = torch.cat([dummy_token, src_txt], dim=1)
mask_txt_dummy = torch.tensor([[True]*self.args.num_dummies]).to(src_txt_mask.device).repeat(src_txt_mask.shape[0], 1)
src_txt_mask_dummy = torch.cat([mask_txt_dummy, src_txt_mask], dim=1)
# Input : Concat video, dummy, txt
src = torch.cat([src_vid, src_txt_dummy], dim=1) # (bsz, L_vid+L_txt, d)
mask = torch.cat([src_vid_mask, src_txt_mask_dummy], dim=1).bool() # (bsz, L_vid+L_txt)
pos = torch.cat([pos_vid, pos_txt_dummy], dim=1)
### sentence token
smask_ = torch.tensor([[True]]).to(mask.device).repeat(src_txt_mask.shape[0], 1)
smask = torch.cat([smask_, src_txt_mask.bool()], dim=1)
ssrc_ = self.sent_rep_token.reshape([1, 1, self.hidden_dim]).repeat(src_txt.shape[0], 1, 1)
ssrc = torch.cat([ssrc_, src_txt], dim=1)
spos_ = self.sent_rep_pos.reshape([1, 1, self.hidden_dim]).repeat(pos_txt.shape[0], 1, 1)
spos = torch.cat([spos_, pos_txt], dim=1)
### dummy sentence token
smaskd = torch.cat([smask_, mask_txt_dummy.bool()], dim=1)
ssrcd = torch.cat([ssrc_, dummy_token], dim=1)
sposd = torch.cat([spos_, pos_dummy], dim=1)
if targets is not None: # train
mmask_ = torch.tensor([[True]]).to(mask.device).repeat(src_vid_mask.shape[0], 1)
mmask = torch.cat([mmask_, src_vid_mask.bool()], dim=1) # [bsz, L_vid+1]
moment_mask_ = torch.clamp(targets["relevant_clips"], 0, 1).bool()
moment_mask = torch.cat([mmask_, moment_mask_], dim=1) # [bsz, L_vid+1]
# if moment_mask.shape[1] != 76:
# import pdb; pdb.set_trace()
mmask = mmask * moment_mask
msrc_ = self.moment_rep_token.reshape([1, 1, self.hidden_dim]).repeat(src_vid.shape[0], 1, 1)
msrc = torch.cat([msrc_, src_vid], dim=1)
mpos_ = self.moment_rep_pos.reshape([1, 1, self.hidden_dim]).repeat(pos_vid.shape[0], 1, 1)
mpos = torch.cat([mpos_, pos_vid], dim=1)
### for Not moment token ####
nmmask_ = torch.tensor([[True]]).to(mask.device).repeat(src_vid_mask.shape[0], 1)
nmmask = torch.cat([nmmask_, src_vid_mask.bool()], dim=1)
nmoment_mask_ = ~(torch.clamp(targets["relevant_clips"], 0, 1).bool())
nmoment_mask = torch.cat([nmmask_, nmoment_mask_], dim=1)
nmmask = nmmask * nmoment_mask
nmsrc_ = self.moment_rep_token.reshape([1, 1, self.hidden_dim]).repeat(src_vid.shape[0], 1, 1)
nmsrc = torch.cat([nmsrc_, src_vid], dim=1)
nmpos_ = self.moment_rep_pos.reshape([1, 1, self.hidden_dim]).repeat(pos_vid.shape[0], 1, 1)
nmpos = torch.cat([nmpos_, pos_vid], dim=1)
###########
else:
moment_mask_ = None
# for t2vidavg sal token
# import pdb; pdb.set_trace()
vidsrc_ = torch.zeros((len(src_vid), 1, self.hidden_dim), dtype=torch.bfloat16).to(device)
for i in range(len(src_vid)):
vidsrc_[i] = src_vid[i][:src_vid_mask.sum(1)[i].long()].mean(0).clone().detach()
video_length = src_vid.shape[1]
if targets is not None: ## train
ssrc = ssrc.permute(1, 0, 2) # (L, batch_size, d)
spos = spos.permute(1, 0, 2) # (L, batch_size, d)
smemory = self.scls_encoder(ssrc, src_key_padding_mask=~smask, pos=spos) # (L, batch_size, d)
sentence_txt, smemory_words = smemory[0], smemory[1:] # sentence_txt : (batch_size, d)
ssrcd = ssrcd.permute(1, 0, 2) # (L, batch_size, d)
sposd = sposd.permute(1, 0, 2) # (L, batch_size, d)
smemoryd = self.scls_encoder(ssrcd, src_key_padding_mask=~smaskd, pos=sposd) # (L, batch_size, d)
sentence_dummy, smemory_words_dummy = smemoryd[0], smemoryd[1:]
txt_dummy_proj = torch.cat([smemory_words_dummy, smemory_words], dim=0)
# import pdb; pdb.set_trace()
# print(src.dtype)
hs, reference, memory, memory_global, attn_weights, memory_moment, nmmemory_moment, mmemory_frames, nmmemory_frames = self.transformer(src, ~mask, self.query_embed.weight, pos, video_length=video_length, moment_idx=targets["relevant_clips"], msrc=msrc, mpos=mpos, mmask=~mmask, nmsrc=nmsrc, nmpos=nmpos, nmmask=~nmmask,
ctxtoken=vidsrc_, gtoken=self.global_rep_token, gpos=self.global_rep_pos, vlen=src_vid_mask.sum(1).long())
moment2txt_similarity = torch.matmul(mmemory_frames.permute(1, 0, 2), txt_dummy_proj.permute(1, 2, 0))
nmoment2txt_similarity = torch.matmul(nmmemory_frames.permute(1, 0, 2), txt_dummy_proj.permute(1, 2, 0))
else: ## inference
sentence_dummy, sentence_txt, moment2txt_similarity, nmoment2txt_similarity = None, None, None, None
hs, reference, memory, memory_global, attn_weights, memory_moment, nmmemory_moment, mmemory_frames, nmmemory_frames = self.transformer(src, ~mask, self.query_embed.weight, pos, video_length=video_length,
ctxtoken=vidsrc_, gtoken=self.global_rep_token, gpos=self.global_rep_pos, vlen=src_vid_mask.sum(1).long())
outputs_class = self.class_embed(hs) # (#layers, batch_size, #queries, #classes)
reference_before_sigmoid = inverse_sigmoid(reference)
tmp = self.span_embed(hs)
outputs_coord = tmp + reference_before_sigmoid
if self.span_loss_type == "l1":
outputs_coord = outputs_coord.sigmoid()
out = {'pred_logits': outputs_class[-1], 'pred_spans': outputs_coord[-1]}
txt_mem = memory[:, src_vid.shape[1]:] # (bsz, L_txt, d)
vid_mem = memory[:, :src_vid.shape[1]] # (bsz, L_vid, d)
if self.contrastive_align_loss:
proj_queries = F.normalize(self.contrastive_align_projection_query(hs), p=2, dim=-1)
proj_txt_mem = F.normalize(self.contrastive_align_projection_txt(txt_mem), p=2, dim=-1)
proj_vid_mem = F.normalize(self.contrastive_align_projection_vid(vid_mem), p=2, dim=-1)
out.update(dict(
proj_queries=proj_queries[-1],
proj_txt_mem=proj_txt_mem,
proj_vid_mem=proj_vid_mem
))
if vid is not None: ## for demo (run_on_video/run.py)
### Neg Pairs ###
neg_vid = ori_vid[1:] + ori_vid[:1]
real_neg_mask = torch.Tensor(element_wise_list_equal(ori_vid, neg_vid)).to(src_txt_dummy.device)
real_neg_mask = real_neg_mask.type(torch.bfloat16)
real_neg_mask = real_neg_mask == False
# import pdb; pdb.set_trace()
if real_neg_mask.sum() != 0:
src_txt_dummy_neg = torch.cat([src_txt_dummy[1:], src_txt_dummy[0:1]], dim=0)
src_txt_mask_dummy_neg = torch.cat([src_txt_mask_dummy[1:], src_txt_mask_dummy[0:1]], dim=0)
src_dummy_neg = torch.cat([src_vid, src_txt_dummy_neg], dim=1)
mask_dummy_neg = torch.cat([src_vid_mask, src_txt_mask_dummy_neg], dim=1).bool()
pos_neg = pos.clone() # since it does not use actual content
mask_dummy_neg = mask_dummy_neg[real_neg_mask]
src_dummy_neg = src_dummy_neg[real_neg_mask]
pos_neg = pos_neg[real_neg_mask]
src_txt_mask_dummy_neg = src_txt_mask_dummy_neg[real_neg_mask]
# import pdb; pdb.set_trace()
_, _, memory_neg, memory_global_neg, attn_weights_neg, _, _, _, _ = self.transformer(src_dummy_neg, ~mask_dummy_neg, self.query_embed.weight, pos_neg, video_length=video_length,
ctxtoken=vidsrc_[real_neg_mask], gtoken=self.global_rep_token, gpos=self.global_rep_pos, vlen=src_vid_mask[real_neg_mask].sum(1).long())
vid_mem_neg = memory_neg[:, :src_vid.shape[1]]
out["saliency_scores_neg"] = (torch.sum(self.saliency_proj1(vid_mem_neg) * self.saliency_proj2(memory_global_neg).unsqueeze(1), dim=-1) / np.sqrt(self.hidden_dim))
out["src_txt_mask_neg"] = src_txt_mask_dummy_neg
out["t2vattnvalues_neg"] = (attn_weights_neg[:, :, self.args.num_dummies:] * (src_txt_mask_dummy_neg[:, self.args.num_dummies:].unsqueeze(1).repeat(1, video_length, 1))).sum(2)
out["t2vattnvalues_neg"] = torch.clamp(out["t2vattnvalues_neg"], 0, 1)
else:
out["saliency_scores_neg"] = None
out["t2vattnvalues_neg"] = None
out["real_neg_mask"] = real_neg_mask
else:
out["saliency_scores_neg"] = None
out["t2vattnvalues_neg"] = None
out["real_neg_mask"] = None
out["saliency_scores"] = (torch.sum(self.saliency_proj1(vid_mem) * self.saliency_proj2(memory_global).unsqueeze(1), dim=-1) / np.sqrt(self.hidden_dim))
out["memory_moment"] = memory_moment
out["nmmemory_moment"] = nmmemory_moment
## sentence token embeeded with text / dummy
out["sentence_txt"] = sentence_txt
out["sentence_dummy"] = sentence_dummy
out["moment2txt_similarity"] = moment2txt_similarity
out["nmoment2txt_similarity"] = nmoment2txt_similarity
out["cate_attn_weights"] = attn_weights
out["moment_mask"] = moment_mask_
out["txt_mask"] = src_txt_mask_dummy
out["t2vattnvalues"] = (attn_weights[:,:,self.args.num_dummies:] * (src_txt_mask.unsqueeze(1).repeat(1, video_length, 1))).sum(2) # (batch_size, L_vid, L_txt) / (batch_size, L_txt)
out["t2vattnvalues"] = torch.clamp(out["t2vattnvalues"], 0, 1)
out["dummy_tokens"] = dummy_token
out["global_rep_tokens"] = self.global_rep_token
# import pdb; pdb.set_trace()
if targets is not None:
out["src_vid"] = mmemory_frames.permute(1, 0, 2) * moment_mask_.unsqueeze(2) + nmmemory_frames.permute(1, 0, 2) * (~(moment_mask_.unsqueeze(2).bool())).bfloat16()
else:
out["src_vid"] = None
out["video_mask"] = src_vid_mask
if self.aux_loss:
# assert proj_queries and proj_txt_mem
out['aux_outputs'] = [
{'pred_logits': a, 'pred_spans': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
if self.contrastive_align_loss:
assert proj_queries is not None
for idx, d in enumerate(proj_queries[:-1]):
out['aux_outputs'][idx].update(dict(proj_queries=d, proj_txt_mem=proj_txt_mem))
return out
class SetCriterion(nn.Module):
""" This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, matcher, weight_dict, eos_coef, losses, temperature, span_loss_type, max_v_l,
saliency_margin=1, use_matcher=True, args=None):
""" Create the criterion.
Parameters:
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
temperature: float, temperature for NCE loss
span_loss_type: str, [l1, ce]
max_v_l: int,
saliency_margin: float
"""
super().__init__()
self.args=args
self.matcher = matcher
self.weight_dict = weight_dict
self.losses = losses
self.temperature = temperature
self.span_loss_type = span_loss_type
self.max_v_l = max_v_l
self.saliency_margin = saliency_margin
# foreground and background classification
self.foreground_label = 0
self.background_label = 1
self.eos_coef = eos_coef
empty_weight = torch.ones(2)
empty_weight[-1] = self.eos_coef # lower weight for background (index 1, foreground index 0)
self.register_buffer('empty_weight', empty_weight)
# for tvsum,
self.use_matcher = use_matcher
# moment sentence contrastive
self.criterion = torch.nn.CrossEntropyLoss()#.to(self.args.device)
self.l2_criterion = torch.nn.MSELoss()#.to(self.args.device)
self.kld_criterion = torch.nn.KLDivLoss(reduction='none')#.to(self.args.device)
self.bce_criterion = nn.BCELoss(reduction='none')
def loss_spans(self, outputs, targets, indices):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "spans" containing a tensor of dim [nb_tgt_spans, 2]
The target spans are expected in format (center_x, w), normalized by the image size.
"""
assert 'pred_spans' in outputs
targets = targets["span_labels"]
idx = self._get_src_permutation_idx(indices)
src_spans = outputs['pred_spans'][idx] # (#spans, max_v_l * 2)
tgt_spans = torch.cat([t['spans'][i] for t, (_, i) in zip(targets, indices)], dim=0) # (#spans, 2)
if self.span_loss_type == "l1":
loss_span = F.l1_loss(src_spans, tgt_spans, reduction='none')
loss_giou = 1 - torch.diag(generalized_temporal_iou(span_cxw_to_xx(src_spans), span_cxw_to_xx(tgt_spans)))
else: # ce
n_spans = src_spans.shape[0]
src_spans = src_spans.view(n_spans, 2, self.max_v_l).transpose(1, 2)
loss_span = F.cross_entropy(src_spans, tgt_spans, reduction='none')
loss_giou = loss_span.new_zeros([1])
losses = {}
losses['loss_span'] = loss_span.mean()
losses['loss_giou'] = loss_giou.mean()
return losses
def loss_labels(self, outputs, targets, indices, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
# TODO add foreground and background classifier. use all non-matched as background.
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits'] # (batch_size, #queries, #classes=2)
# idx is a tuple of two 1D tensors (batch_idx, src_idx), of the same length == #objects in batch
idx = self._get_src_permutation_idx(indices)
target_classes = torch.full(src_logits.shape[:2], self.background_label,
dtype=torch.int64, device=src_logits.device) # (batch_size, #queries)
target_classes[idx] = self.foreground_label
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduction="none")
losses = {'loss_label': loss_ce.mean()}
if log:
# TODO this should probably be a separate loss, not hacked in this one here
losses['class_error'] = 100 - accuracy(src_logits[idx], self.foreground_label)[0]
return losses
def loss_saliency(self, outputs, targets, indices, log=True):
"""higher scores for positive clips"""
if "saliency_pos_labels" not in targets:
return {"loss_saliency": 0}
# Neg pair loss
if outputs["saliency_scores_neg"] is not None: ## When batch size is not 1 (negative pair exists)
vid_token_mask = outputs["video_mask"]
real_neg_mask = outputs["real_neg_mask"]
saliency_scores_neg = outputs["saliency_scores_neg"].clone() # (N, L)
loss_neg_pair = (- torch.log(1. - torch.sigmoid(saliency_scores_neg)) * (vid_token_mask[real_neg_mask])).sum(dim=1).mean()
saliency_scores = outputs["saliency_scores"].clone() # (N, L)
saliency_contrast_label = targets["saliency_all_labels"]
# real neg
realneg_saliency_scores = torch.cat([saliency_scores[real_neg_mask], saliency_scores_neg], dim=1)
realneg_saliency_contrast_label = torch.cat([saliency_contrast_label[real_neg_mask], torch.zeros_like(saliency_contrast_label)[real_neg_mask]], dim=1)
realneg_vid_token_mask = vid_token_mask[real_neg_mask].repeat([1, 2])
realneg_saliency_scores = realneg_vid_token_mask * realneg_saliency_scores + (1. - realneg_vid_token_mask) * -1e+3
tau = 0.5
loss_rank_contrastive = 0.
for rand_idx in range(1, 12):
drop_mask = ~(realneg_saliency_contrast_label > 100) # no drop
pos_mask = (realneg_saliency_contrast_label >= rand_idx) # positive when equal or higher than rand_idx
if torch.sum(pos_mask) == 0: # no positive sample
continue
else:
batch_drop_mask = torch.sum(pos_mask, dim=1) > 0 # negative sample indicator
# drop higher ranks
cur_saliency_scores = realneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
# numerical stability
logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
# softmax
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)
mean_log_prob_pos = (pos_mask * log_prob * realneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
loss = - mean_log_prob_pos * batch_drop_mask
loss_rank_contrastive = loss_rank_contrastive + loss.mean()
loss_rank_contrastive = loss_rank_contrastive / 12
false_neg_mask = ~(real_neg_mask)
if false_neg_mask.sum() != 0:
if false_neg_mask.sum() == 1:
falseneg_saliency_scores = saliency_scores[false_neg_mask].unsqueeze(0)
falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask].unsqueeze(0)
falseneg_vid_token_mask = vid_token_mask[false_neg_mask].unsqueeze(0)
falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3
else:
falseneg_saliency_scores = saliency_scores[false_neg_mask]
falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask]
falseneg_vid_token_mask = vid_token_mask[false_neg_mask]
falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3
tau = 0.5
falseneg_loss_rank_contrastive = 0.
for rand_idx in range(1, 12):
drop_mask = ~(falseneg_saliency_contrast_label > 100) # no drop
pos_mask = (falseneg_saliency_contrast_label >= rand_idx) # positive when equal or higher than rand_idx
if torch.sum(pos_mask) == 0: # no positive sample
continue
else:
batch_drop_mask = torch.sum(pos_mask, dim=1) > 0 # negative sample indicator
# drop higher ranks
cur_saliency_scores = falseneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
# numerical stability
logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
# softmax
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)
mean_log_prob_pos = (pos_mask * log_prob * falseneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
loss = - mean_log_prob_pos * batch_drop_mask
falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive + loss.mean()
falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive / 12
loss_rank_contrastive += falseneg_loss_rank_contrastive
saliency_scores = outputs["saliency_scores"] # (N, L)
pos_indices = targets["saliency_pos_labels"] # (N, #pairs)
neg_indices = targets["saliency_neg_labels"] # (N, #pairs)
num_pairs = pos_indices.shape[1] # typically 2 or 4
batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
pos_scores = torch.stack(
[saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
neg_scores = torch.stack(
[saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
loss_saliency = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
/ (len(pos_scores) * num_pairs) * 2 # * 2 to keep the loss the same scale
# if self.args.dset_name in ['youtube_uni']:
# loss_saliency = loss_saliency + loss_rank_contrastive + loss_neg_pair * 0.
# else:
loss_saliency = loss_saliency + loss_rank_contrastive + loss_neg_pair
########### Saliency loss to t2v attn weights ##############
"""higher scores for positive clips"""
vid_token_mask = outputs["video_mask"]
# Neg pair loss
if outputs["t2vattnvalues_neg"] is not None:
saliency_scores_neg = outputs["t2vattnvalues_neg"].clone() # (N, L)
loss_neg_pair_attn = (- torch.log(1. - saliency_scores_neg) * (vid_token_mask[real_neg_mask])).sum(dim=1).mean()
saliency_scores = outputs["t2vattnvalues"].clone() # (N, L)
saliency_contrast_label = targets["saliency_all_labels"]
# real neg
realneg_saliency_scores = torch.cat([saliency_scores[real_neg_mask], saliency_scores_neg], dim=1)
realneg_saliency_contrast_label = torch.cat(
[saliency_contrast_label[real_neg_mask], torch.zeros_like(saliency_contrast_label)[real_neg_mask]], dim=1)
realneg_vid_token_mask = vid_token_mask[real_neg_mask].repeat([1, 2])
realneg_saliency_scores = realneg_vid_token_mask * realneg_saliency_scores + (
1. - realneg_vid_token_mask) * -1e+3
tau = 0.5
loss_rank_contrastive_attn = 0.
for rand_idx in range(1, 12):
drop_mask = ~(realneg_saliency_contrast_label > 100) # no drop
pos_mask = (realneg_saliency_contrast_label >= rand_idx) # positive when equal or higher than rand_idx
if torch.sum(pos_mask) == 0: # no positive sample
continue
else:
batch_drop_mask = torch.sum(pos_mask, dim=1) > 0 # negative sample indicator
# drop higher ranks
cur_saliency_scores = realneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
# numerical stability
logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
# softmax
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)
mean_log_prob_pos = (pos_mask * log_prob * realneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
loss = - mean_log_prob_pos * batch_drop_mask
loss_rank_contrastive_attn = loss_rank_contrastive_attn + loss.mean()
loss_rank_contrastive_attn = loss_rank_contrastive_attn / 12
false_neg_mask = ~(real_neg_mask)
if false_neg_mask.sum() != 0:
if false_neg_mask.sum() == 1:
falseneg_saliency_scores = saliency_scores[false_neg_mask].unsqueeze(0)
falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask].unsqueeze(0)
falseneg_vid_token_mask = vid_token_mask[false_neg_mask].unsqueeze(0)
falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3
else:
falseneg_saliency_scores = saliency_scores[false_neg_mask]
falseneg_saliency_contrast_label = saliency_contrast_label[false_neg_mask]
falseneg_vid_token_mask = vid_token_mask[false_neg_mask]
falseneg_saliency_scores = falseneg_vid_token_mask * falseneg_saliency_scores + (1. - falseneg_vid_token_mask) * -1e+3
tau = 0.5
falseneg_loss_rank_contrastive = 0.
for rand_idx in range(1, 12):
drop_mask = ~(falseneg_saliency_contrast_label > 100) # no drop
pos_mask = (falseneg_saliency_contrast_label >= rand_idx) # positive when equal or higher than rand_idx
if torch.sum(pos_mask) == 0: # no positive sample
continue
else:
batch_drop_mask = torch.sum(pos_mask, dim=1) > 0 # negative sample indicator
# drop higher ranks
cur_saliency_scores = falseneg_saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
# numerical stability
logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
# softmax
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)
mean_log_prob_pos = (pos_mask * log_prob * falseneg_vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
loss = - mean_log_prob_pos * batch_drop_mask
falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive + loss.mean()
falseneg_loss_rank_contrastive = falseneg_loss_rank_contrastive / 12
loss_rank_contrastive += falseneg_loss_rank_contrastive
saliency_scores = outputs["t2vattnvalues"] # (N, L)
pos_indices = targets["saliency_pos_labels"] # (N, #pairs)
neg_indices = targets["saliency_neg_labels"] # (N, #pairs)
num_pairs = pos_indices.shape[1] # typically 2 or 4
batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
pos_scores = torch.stack(
[saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
neg_scores = torch.stack(
[saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
loss_saliency_attn = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
/ (len(pos_scores) * num_pairs) * 2 # * 2 to keep the loss the same scale
saliency_binary_label = torch.clamp(targets["saliency_all_labels"], 0, 1)
logits = saliency_scores.reshape(-1)
labels_x = saliency_binary_label.reshape(-1)
BCEcriterion = nn.BCELoss()
bceloss = BCEcriterion(logits, labels_x)
# if self.args.dset_name in ['youtube_uni']:
# loss_saliency_attn = loss_rank_contrastive_attn + bceloss + loss_neg_pair_attn * 0 + loss_saliency_attn
# else:
loss_saliency_attn = loss_rank_contrastive_attn + bceloss + loss_neg_pair_attn + loss_saliency_attn
loss_saliency += (loss_saliency_attn * self.args.lw_wattn)
else: ## when batch size == 1
vid_token_mask = outputs["video_mask"]
saliency_scores = outputs["saliency_scores"].clone() # (N, L)
saliency_contrast_label = targets["saliency_all_labels"]
saliency_scores = vid_token_mask * saliency_scores + (1. - vid_token_mask) * -1e+3
tau = 0.5
loss_rank_contrastive = 0.
for rand_idx in range(1, 12):
drop_mask = ~(saliency_contrast_label > 100) # no drop
pos_mask = (saliency_contrast_label >= rand_idx) # positive when equal or higher than rand_idx
if torch.sum(pos_mask) == 0: # no positive sample
continue
else:
batch_drop_mask = torch.sum(pos_mask, dim=1) > 0 # negative sample indicator
# drop higher ranks
cur_saliency_scores = saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
# numerical stability
logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
# softmax
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)
mean_log_prob_pos = (pos_mask * log_prob * vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
loss = - mean_log_prob_pos * batch_drop_mask
loss_rank_contrastive = loss_rank_contrastive + loss.mean()
loss_rank_contrastive = loss_rank_contrastive / 12
saliency_scores = outputs["saliency_scores"] # (N, L)
pos_indices = targets["saliency_pos_labels"] # (N, #pairs)
neg_indices = targets["saliency_neg_labels"] # (N, #pairs)
num_pairs = pos_indices.shape[1] # typically 2 or 4
batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
pos_scores = torch.stack(
[saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
neg_scores = torch.stack(
[saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
loss_saliency = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
/ (len(pos_scores) * num_pairs) * 2 # * 2 to keep the loss the same scale
loss_saliency = loss_saliency + loss_rank_contrastive
########### Saliency loss to t2v attn weights ##############
"""higher scores for positive clips"""
vid_token_mask = outputs["video_mask"]
saliency_scores = outputs["t2vattnvalues"].clone() # (N, L)
saliency_contrast_label = targets["saliency_all_labels"]
saliency_scores = vid_token_mask * saliency_scores + (1. - vid_token_mask) * -1e+3
tau = 0.5
loss_rank_contrastive = 0.
for rand_idx in range(1, 12):
drop_mask = ~(saliency_contrast_label > 100) # no drop
pos_mask = (saliency_contrast_label >= rand_idx) # positive when equal or higher than rand_idx
if torch.sum(pos_mask) == 0: # no positive sample
continue
else:
batch_drop_mask = torch.sum(pos_mask, dim=1) > 0 # negative sample indicator
# drop higher ranks
cur_saliency_scores = saliency_scores * drop_mask / tau + ~drop_mask * -1e+3
# numerical stability
logits = cur_saliency_scores - torch.max(cur_saliency_scores, dim=1, keepdim=True)[0]
# softmax
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True) + 1e-6)
mean_log_prob_pos = (pos_mask * log_prob * vid_token_mask).sum(1) / (pos_mask.sum(1) + 1e-6)
loss = - mean_log_prob_pos * batch_drop_mask
loss_rank_contrastive = loss_rank_contrastive + loss.mean()
loss_rank_contrastive_attn = loss_rank_contrastive / 12
saliency_scores = outputs["t2vattnvalues"] # (N, L)
pos_indices = targets["saliency_pos_labels"] # (N, #pairs)
neg_indices = targets["saliency_neg_labels"] # (N, #pairs)
num_pairs = pos_indices.shape[1] # typically 2 or 4
batch_indices = torch.arange(len(saliency_scores)).to(saliency_scores.device)
pos_scores = torch.stack(
[saliency_scores[batch_indices, pos_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
neg_scores = torch.stack(
[saliency_scores[batch_indices, neg_indices[:, col_idx]] for col_idx in range(num_pairs)], dim=1)
loss_saliency_attn = torch.clamp(self.saliency_margin + neg_scores - pos_scores, min=0).sum() \
/ (len(pos_scores) * num_pairs) * 2 # * 2 to keep the loss the same scale
saliency_binary_label = torch.clamp(targets["saliency_all_labels"], 0, 1)
logits = saliency_scores.reshape(-1)
labels_x = saliency_binary_label.reshape(-1)
BCEcriterion = nn.BCELoss()
bceloss = BCEcriterion(logits, labels_x)
loss_saliency_attn = loss_rank_contrastive_attn + bceloss + loss_saliency_attn
loss_saliency += (loss_saliency_attn * self.args.lw_wattn)
return {"loss_saliency": loss_saliency}
def loss_contrastive_moment_sentence(self, outputs, targets, indices, log=True):
if outputs["memory_moment"] is not None:
moment_token = outputs["memory_moment"]
nmmemory_moment = outputs["nmmemory_moment"]
sentence_token = outputs["sentence_txt"].squeeze(1)
sentence_dummy = outputs["sentence_dummy"].squeeze(1) # b, 1, d
moment_logits = F.normalize(moment_token, dim=1)
nmoment_logits = F.normalize(nmmemory_moment, dim=1)
sentence_logits = F.normalize(sentence_token, dim=1)
dummy_logits = F.normalize(sentence_dummy, dim=1)
# import pdb; pdb.set_trace()
similarity_matrix = torch.matmul(moment_logits, sentence_logits.T) # B B
nsimilarity_matrix = torch.matmul(nmoment_logits, sentence_logits.T) # B B
similarity_matrix = torch.cat([similarity_matrix, nsimilarity_matrix], dim=1)
labels = torch.eye(similarity_matrix.shape[0]).to(sentence_logits.device)
nlabels = torch.zeros_like(nsimilarity_matrix).to(sentence_logits.device)
labels = torch.cat([labels, nlabels], dim=1).max(dim=1)[1]
loss_ms_align = self.criterion(similarity_matrix, labels)
dummy_similarity_matrix = torch.matmul(moment_logits, dummy_logits.T)
dummy_nsimilarity_matrix = torch.matmul(nmoment_logits, dummy_logits.T)
dummy_similarity_matrix = torch.cat([dummy_similarity_matrix, dummy_nsimilarity_matrix], dim=1)
dummy_labels = (~(torch.eye(similarity_matrix.shape[0]).to(sentence_logits.device).bool())).float()
dummy_nlabels = torch.ones_like(nsimilarity_matrix).to(sentence_logits.device)
dummy_labels = torch.cat([dummy_labels, dummy_nlabels], dim=1).max(dim=1)[1]
dummy_loss_ms_align = self.criterion(dummy_similarity_matrix, dummy_labels)
loss_ms_align += dummy_loss_ms_align
video_mask = outputs['video_mask']
src_vid = outputs['src_vid'] # [bsz, L_vid, D_vid]
moment_mask_ = torch.clamp(targets["relevant_clips"], 0, 1)
momtokcls_pred = torch.matmul(moment_token.unsqueeze(1), src_vid.permute(0, 2, 1)) # bsz 1 L_vid
momtokcls_label = moment_mask_
momtokcls_logit = torch.sigmoid(momtokcls_pred)
loss_ms_align += (self.bce_criterion(momtokcls_logit.reshape(-1), momtokcls_label.reshape(-1)) * video_mask.reshape(-1)).mean()
else:
loss_ms_align = 0.
return {"loss_ms_align": loss_ms_align}
#
def loss_moment2txt_sim_distill(self, outputs, targets, indices, log=True):
if outputs["moment2txt_similarity"] is not None:
moment2txt_similarity = outputs["moment2txt_similarity"] # bsz L_clip 22
moment_mask = outputs["moment_mask"].int() # bsz L_clip 1
txt_mask = outputs["txt_mask"].unsqueeze(1).repeat(1, outputs["cate_attn_weights"].size(1), 1) # bsz l_t
attn_weights = outputs["cate_attn_weights"] # bsz L_clip 22
b, L_vid, L_txt = attn_weights.size()
loss_distill = self.kld_criterion(
torch.log(attn_weights + 1e-6).reshape(b * L_vid, -1),
torch.softmax(moment2txt_similarity, dim=-1).clone().detach().reshape(b * L_vid, -1)).mean(1) * moment_mask.reshape(-1)
loss_distill = loss_distill.sum() / moment_mask.sum()
else:
loss_distill = 0.
return {"loss_distill": loss_distill}
def loss_orthogonal_dummy(self, outputs, targets, indices, log=True):
dummy_tokens = outputs["dummy_tokens"] # (n_dum, dim)
if dummy_tokens.size(1) != 1:
dummy_tokens_norm = dummy_tokens / dummy_tokens.norm(dim=2)[:, :, None]
dummy_tokens_sim = torch.matmul(dummy_tokens_norm, dummy_tokens_norm.permute(0, 2, 1).detach())
for i in range(len(dummy_tokens_sim)):
dummy_tokens_sim[i].fill_diagonal_(0)
loss_dummy_ortho = dummy_tokens_sim.abs().mean()
else:
loss_dummy_ortho=0.
global_tokens = outputs["global_rep_tokens"]
global_tokens_norm = global_tokens / global_tokens.norm(dim=1)[:, None]
global_tokens_sim = torch.matmul(global_tokens_norm, global_tokens_norm.permute(1, 0).detach())
for i in range(len(global_tokens_sim)):
global_tokens_sim.fill_diagonal_(0)
loss_dummy_ortho += global_tokens_sim.abs().mean()
return {"loss_orthogonal_dummy": loss_dummy_ortho}
def loss_contrastive_align(self, outputs, targets, indices, log=True):
"""encourage higher scores between matched query span and input text"""
normalized_text_embed = outputs["proj_txt_mem"] # (bsz, #tokens, d) text tokens
normalized_img_embed = outputs["proj_queries"] # (bsz, #queries, d)
logits = torch.einsum(
"bmd,bnd->bmn", normalized_img_embed, normalized_text_embed) # (bsz, #queries, #tokens)
logits = logits.sum(2) / self.temperature # (bsz, #queries)
idx = self._get_src_permutation_idx(indices)
positive_map = torch.zeros_like(logits, dtype=torch.bool)
positive_map[idx] = True
positive_logits = logits.masked_fill(~positive_map, 0)
pos_term = positive_logits.sum(1) # (bsz, )
num_pos = positive_map.sum(1) # (bsz, )
neg_term = logits.logsumexp(1) # (bsz, )
loss_nce = - pos_term / num_pos + neg_term # (bsz, )
losses = {"loss_contrastive_align": loss_nce.mean()}
return losses
def loss_contrastive_align_vid_txt(self, outputs, targets, indices, log=True):
"""encourage higher scores between matched query span and input text"""
normalized_text_embed = outputs["proj_txt_mem"] # (bsz, #tokens, d) text tokens
normalized_img_embed = outputs["proj_queries"] # (bsz, #queries, d)
logits = torch.einsum(
"bmd,bnd->bmn", normalized_img_embed, normalized_text_embed) # (bsz, #queries, #tokens)
logits = logits.sum(2) / self.temperature # (bsz, #queries)
idx = self._get_src_permutation_idx(indices)
positive_map = torch.zeros_like(logits, dtype=torch.bool)
positive_map[idx] = True
positive_logits = logits.masked_fill(~positive_map, 0)
pos_term = positive_logits.sum(1) # (bsz, )
num_pos = positive_map.sum(1) # (bsz, )
neg_term = logits.logsumexp(1) # (bsz, )
loss_nce = - pos_term / num_pos + neg_term # (bsz, )
losses = {"loss_contrastive_align": loss_nce.mean()}
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx # two 1D tensors of the same length
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, **kwargs):
loss_map = {
"spans": self.loss_spans,
"labels": self.loss_labels,
"contrastive_align": self.loss_contrastive_align,
"saliency": self.loss_saliency,
"ms_align": self.loss_contrastive_moment_sentence,
"distill": self.loss_moment2txt_sim_distill,
"orthogonal_dummy":self.loss_orthogonal_dummy
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, **kwargs)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
# Retrieve the matching between the outputs of the last layer and the targets
# list(tuples), each tuple is (pred_span_indices, tgt_span_indices)
# only for HL, do not use matcher
if self.use_matcher:
# import pdb; pdb.set_trace()
indices = self.matcher(outputs_without_aux, targets)
losses_target = self.losses
else:
indices = None
losses_target = ["saliency"]
# Compute all the requested losses
losses = {}
for loss in losses_target:
losses.update(self.get_loss(loss, outputs, targets, indices))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
# indices = self.matcher(aux_outputs, targets)
if self.use_matcher:
indices = self.matcher(aux_outputs, targets)
losses_target = self.losses
else:
indices = None
losses_target = ["saliency", "ms_align", "distill", "orthogonal_dummy"]
for loss in losses_target:
if "saliency" == loss: # skip as it is only in the top layer
continue
if "ms_align" == loss:
continue
if "distill" == loss:
continue
if "orthogonal_dummy" == loss:
continue
kwargs = {}
l_dict = self.get_loss(loss, aux_outputs, targets, indices, **kwargs)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class LinearLayer(nn.Module):
"""linear layer configurable with layer normalization, dropout, ReLU."""
def __init__(self, input_dim, output_dim, layer_norm=True, dropout=0.1, relu=True):
super(LinearLayer, self).__init__()
self.relu = relu
self.layer_norm = layer_norm
if layer_norm:
self.LayerNorm = nn.LayerNorm(input_dim)
layers = [
nn.Dropout(dropout),
nn.Linear(input_dim, output_dim)
]
self.net = nn.Sequential(*layers)
def forward(self, x):
"""(N, L, D)"""
if self.layer_norm:
x = self.LayerNorm(x)
x = self.net(x)
if self.relu:
x = F.relu(x, inplace=True)
return x # (N, L, D)
class CGDETRConfig:
def __init__(self, dset_name='charadesSTA', eval_split_name='val', data_ratio=1.0,
results_root='results', exp_id=None, max_es_cnt=200, eval_epoch=5,
grad_clip=0.1, eval_untrained=False, resume_all=False, start_epoch=None,
max_q_l=-1, max_v_l=-1, clip_length=1, max_windows=5, train_path=None,
eval_path=None, no_norm_vfeat=False, no_norm_tfeat=False, v_feat_dirs=None,
t_feat_dir=None, v_feat_dim=770, t_feat_dim=4096, ctx_mode='video_tef',
position_embedding='sine', enc_layers=3, dec_layers=3, t2v_layers=2,
sent_layers=1, moment_layers=1, dummy_layers=2, dim_feedforward=1024,
hidden_dim=256, input_dropout=0.5, dropout=0.1, txt_drop_ratio=0,
use_txt_pos=False, nheads=8, num_queries=10, num_dummies=45,
total_prompts=10, num_prompts=1, pre_norm=False, n_input_proj=2,
contrastive_hdim=64, temperature=0.07, saliency_margin=0.2, aux_loss=True,
span_loss_type='l1', contrastive_align_loss=False, set_cost_span=10,
set_cost_giou=1, set_cost_class=4, lw_saliency=4, lw_wattn=1.0,
lw_ms_align=1.0, lw_distill=1.0, span_loss_coef=10, giou_loss_coef=1,
label_loss_coef=4, eos_coef=0.1, contrastive_align_loss_coef=0.02,
no_sort_results=False, max_before_nms=10, max_after_nms=10,
conf_thd=0.0, nms_thd=-1):
self.dset_name = dset_name
self.eval_split_name = eval_split_name
self.data_ratio = data_ratio
self.results_root = results_root
self.exp_id = exp_id
self.max_es_cnt = max_es_cnt
self.eval_epoch = eval_epoch
self.grad_clip = grad_clip
self.eval_untrained = eval_untrained
self.resume_all = resume_all
self.start_epoch = start_epoch
self.max_q_l = max_q_l
self.max_v_l = max_v_l
self.clip_length = clip_length
self.max_windows = max_windows
self.train_path = train_path
self.eval_path = eval_path
self.no_norm_vfeat = no_norm_vfeat
self.no_norm_tfeat = no_norm_tfeat
self.v_feat_dirs = v_feat_dirs
self.t_feat_dir = t_feat_dir
self.v_feat_dim = v_feat_dim
self.t_feat_dim = t_feat_dim
self.ctx_mode = ctx_mode
self.position_embedding = position_embedding
self.enc_layers = enc_layers
self.dec_layers = dec_layers
self.t2v_layers = t2v_layers
self.sent_layers = sent_layers
self.moment_layers = moment_layers
self.dummy_layers = dummy_layers
self.dim_feedforward = dim_feedforward
self.hidden_dim = hidden_dim
self.input_dropout = input_dropout
self.dropout = dropout
self.txt_drop_ratio = txt_drop_ratio
self.use_txt_pos = use_txt_pos
self.nheads = nheads
self.num_queries = num_queries
self.num_dummies = num_dummies
self.total_prompts = total_prompts
self.num_prompts = num_prompts
self.pre_norm = pre_norm
self.n_input_proj = n_input_proj
self.contrastive_hdim = contrastive_hdim
self.temperature = temperature
self.saliency_margin = saliency_margin
self.aux_loss = aux_loss
self.span_loss_type = span_loss_type
self.contrastive_align_loss = contrastive_align_loss
self.set_cost_span = set_cost_span
self.set_cost_giou = set_cost_giou
self.set_cost_class = set_cost_class
self.lw_saliency = lw_saliency
self.lw_wattn = lw_wattn
self.lw_ms_align = lw_ms_align
self.lw_distill = lw_distill
self.span_loss_coef = span_loss_coef
self.giou_loss_coef = giou_loss_coef
self.label_loss_coef = label_loss_coef
self.eos_coef = eos_coef
self.contrastive_align_loss_coef = contrastive_align_loss_coef
self.no_sort_results = no_sort_results
self.max_before_nms = max_before_nms
self.max_after_nms = max_after_nms
self.conf_thd = conf_thd
self.nms_thd = nms_thd
def build_cgdetr_model():
# device = torch.device(args.device)
# import pdb; pdb.set_trace()
args = CGDETRConfig()
transformer = build_transformer(args)
position_embedding, txt_position_embedding = build_position_encoding(args)
# if args.a_feat_dir is None:
model = CGDETR(
transformer,
position_embedding,
txt_position_embedding,
txt_dim=args.t_feat_dim,
vid_dim=args.v_feat_dim,
num_queries=args.num_queries,
input_dropout=args.input_dropout,
aux_loss=args.aux_loss,
contrastive_align_loss=args.contrastive_align_loss,
contrastive_hdim=args.contrastive_hdim,
span_loss_type=args.span_loss_type,
use_txt_pos=args.use_txt_pos,
n_input_proj=args.n_input_proj,
args=args
)
# else:
# model = CGDETR(
# transformer,
# position_embedding,
# txt_position_embedding,
# txt_dim=args.t_feat_dim,
# vid_dim=args.v_feat_dim,
# aud_dim=args.a_feat_dim,
# num_queries=args.num_queries,
# input_dropout=args.input_dropout,
# aux_loss=args.aux_loss,
# contrastive_align_loss=args.contrastive_align_loss,
# contrastive_hdim=args.contrastive_hdim,
# span_loss_type=args.span_loss_type,
# use_txt_pos=args.use_txt_pos,
# n_input_proj=args.n_input_proj,
# args=args
# )
matcher = build_matcher(args)
weight_dict = {"loss_span": args.span_loss_coef,
"loss_giou": args.giou_loss_coef,
"loss_label": args.label_loss_coef,
"loss_saliency": args.lw_saliency,
"loss_ms_align": args.lw_ms_align,
"loss_distill": args.lw_distill,
"loss_orthogonal_dummy":args.lw_distill}
if args.contrastive_align_loss:
weight_dict["loss_contrastive_align"] = args.contrastive_align_loss_coef
if args.aux_loss:
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items() if k != "loss_saliency"})
weight_dict.update(aux_weight_dict)
losses = ['spans', 'labels', 'saliency', 'ms_align', 'distill', 'orthogonal_dummy']
if args.contrastive_align_loss:
losses += ["contrastive_align"]
# For highlight detection datasets
# use_matcher = not (args.dset_name in ['youtube_uni', 'tvsum'])
use_matcher = True
criterion = SetCriterion(
matcher=matcher, weight_dict=weight_dict, losses=losses,
eos_coef=args.eos_coef, temperature=args.temperature,
span_loss_type=args.span_loss_type, max_v_l=args.max_v_l,
saliency_margin=args.saliency_margin, use_matcher=use_matcher, args=args
)
# criterion.to(device)
return model, criterion
|