File size: 18,523 Bytes
16dc4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import pprint
from tqdm import tqdm, trange
import numpy as np
import os
from collections import OrderedDict, defaultdict
from utils.basic_utils import AverageMeter
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from cg_detr.config import TestOptions
from cg_detr.model import build_model
from cg_detr.span_utils import span_cxw_to_xx
from cg_detr.start_end_dataset import StartEndDataset, start_end_collate, prepare_batch_inputs
from cg_detr.postprocessing_cg_detr import PostProcessorDETR
from standalone_eval.eval import eval_submission
from utils.basic_utils import save_jsonl, save_json
from utils.temporal_nms import temporal_nms
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def post_processing_mr_nms(mr_res, nms_thd, max_before_nms, max_after_nms):
mr_res_after_nms = []
for e in mr_res:
e["pred_relevant_windows"] = temporal_nms(
e["pred_relevant_windows"][:max_before_nms],
nms_thd=nms_thd,
max_after_nms=max_after_nms
)
mr_res_after_nms.append(e)
return mr_res_after_nms
def eval_epoch_post_processing(submission, opt, gt_data, save_submission_filename):
# IOU_THDS = (0.5, 0.7)
logger.info("Saving/Evaluating before nms results")
submission_path = os.path.join(opt.results_dir, save_submission_filename)
save_jsonl(submission, submission_path)
if opt.eval_split_name in ["val"]: # since test_public has no GT
metrics = eval_submission(
submission, gt_data,
verbose=opt.debug, match_number=not opt.debug
)
save_metrics_path = submission_path.replace(".jsonl", "_metrics.json")
save_json(metrics, save_metrics_path, save_pretty=True, sort_keys=False)
latest_file_paths = [submission_path, save_metrics_path]
else:
metrics = None
latest_file_paths = [submission_path, ]
if opt.nms_thd != -1:
logger.info("[MR] Performing nms with nms_thd {}".format(opt.nms_thd))
submission_after_nms = post_processing_mr_nms(
submission, nms_thd=opt.nms_thd,
max_before_nms=opt.max_before_nms, max_after_nms=opt.max_after_nms
)
logger.info("Saving/Evaluating nms results")
submission_nms_path = submission_path.replace(".jsonl", "_nms_thd_{}.jsonl".format(opt.nms_thd))
save_jsonl(submission_after_nms, submission_nms_path)
if opt.eval_split_name == "val":
metrics_nms = eval_submission(
submission_after_nms, gt_data,
verbose=opt.debug, match_number=not opt.debug
)
save_metrics_nms_path = submission_nms_path.replace(".jsonl", "_metrics.json")
save_json(metrics_nms, save_metrics_nms_path, save_pretty=True, sort_keys=False)
latest_file_paths += [submission_nms_path, save_metrics_nms_path]
else:
metrics_nms = None
latest_file_paths = [submission_nms_path, ]
else:
metrics_nms = None
return metrics, metrics_nms, latest_file_paths
# for HL
@torch.no_grad()
def compute_hl_results(model, eval_loader, opt, epoch_i=None, criterion=None, tb_writer=None):
model.eval()
if criterion:
assert eval_loader.dataset.load_labels
criterion.eval()
loss_meters = defaultdict(AverageMeter)
write_tb = tb_writer is not None and epoch_i is not None
mr_res = []
topk = 5 # top-5 map
video_ap_collected = []
for batch in tqdm(eval_loader, desc="compute st ed scores"):
query_meta = batch[0]
model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
outputs = model(**model_inputs)
# loss meters
# if criterion:
# loss_dict = criterion(outputs, targets)
# weight_dict = criterion.weight_dict
# print(loss_dict)
# print(weight_dict)
# print('#######')
# {'loss_saliency': tensor(18.1374, device='cuda:0')}
# {'loss_span': 10, 'loss_giou': 1, 'loss_label': 4, 'loss_saliency': 1.0, 'loss_ms_align': 1.0,
# 'loss_distill': 1.0, 'loss_span_0': 10, 'loss_giou_0': 1, 'loss_label_0': 4, 'loss_ms_align_0': 1.0,
# 'loss_distill_0': 1.0}
# losses=0.
# print(loss_dict.keys(), weight_dict.keys())
# losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# loss_dict["loss_overall"] = float(losses) # for logging only
# print(loss_dict.items())
#
# print(weight_dict.items())
# for k, v in loss_dict.items():
# loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
preds = outputs['saliency_scores'].clone().detach()
for meta, pred in zip(query_meta, preds):
pred = pred
label = meta['label'] # raw label
video_ap = []
# Follow the UMT code "https://github.com/TencentARC/UMT/blob/main/datasets/tvsum.py"
if opt.dset_name in ["tvsum"]:
for i in range(20):
pred=pred.cpu()
cur_pred = pred[:len(label)]
inds = torch.argsort(cur_pred, descending=True, dim=-1)
# video_id = self.get_video_id(idx)
cur_label = torch.Tensor(label)[:, i]
cur_label = torch.where(cur_label > cur_label.median(), 1.0, .0)
cur_label = cur_label[inds].tolist()[:topk]
# if (num_gt := sum(cur_label)) == 0:
num_gt = sum(cur_label)
if num_gt == 0:
video_ap.append(0)
continue
hits = ap = rec = 0
prc = 1
for j, gt in enumerate(cur_label):
hits += gt
_rec = hits / num_gt
_prc = hits / (j + 1)
ap += (_rec - rec) * (prc + _prc) / 2
rec, prc = _rec, _prc
video_ap.append(ap)
elif opt.dset_name in ["youtube_uni"]:
cur_pred = pred[:len(label)]
# if opt.dset_name == "tvsum_sfc":
cur_pred = cur_pred.cpu()
inds = torch.argsort(cur_pred, descending=True, dim=-1)
cur_label = torch.Tensor(label).squeeze()[inds].tolist()
num_gt = sum(cur_label)
if num_gt == 0:
video_ap.append(0)
continue
hits = ap = rec = 0
prc = 1
for j, gt in enumerate(cur_label):
hits += gt
_rec = hits / num_gt
_prc = hits / (j + 1)
ap += (_rec - rec) * (prc + _prc) / 2
rec, prc = _rec, _prc
video_ap.append(float(ap))
else:
print("No such dataset")
exit(-1)
video_ap_collected.append(video_ap)
mean_ap = np.mean(video_ap_collected)
submmission = dict(mAP=round(mean_ap, 5))
# tensorboard writer
if write_tb and criterion:
for k, v in loss_meters.items():
tb_writer.add_scalar("Eval/{}".format(k), v.avg, epoch_i + 1)
return submmission, loss_meters
@torch.no_grad()
def compute_mr_results(model, eval_loader, opt, epoch_i=None, criterion=None, tb_writer=None):
model.eval()
if criterion:
assert eval_loader.dataset.load_labels
criterion.eval()
loss_meters = defaultdict(AverageMeter)
write_tb = tb_writer is not None and epoch_i is not None
mr_res = []
for batch in tqdm(eval_loader, desc="compute st ed scores"):
query_meta = batch[0]
model_inputs, targets = prepare_batch_inputs(batch[1], opt.device, non_blocking=opt.pin_memory)
outputs = model(**model_inputs)
prob = F.softmax(outputs["pred_logits"], -1) # (batch_size, #queries, #classes=2)
if opt.span_loss_type == "l1":
scores = prob[..., 0] # * (batch_size, #queries) foreground label is 0, we directly take it
pred_spans = outputs["pred_spans"] # (bsz, #queries, 2)
_saliency_scores = outputs["saliency_scores"].half() # (bsz, L)
saliency_scores = []
valid_vid_lengths = model_inputs["src_vid_mask"].sum(1).cpu().tolist()
for j in range(len(valid_vid_lengths)):
saliency_scores.append(_saliency_scores[j, :int(valid_vid_lengths[j])].tolist())
else:
bsz, n_queries = outputs["pred_spans"].shape[:2] # # (bsz, #queries, max_v_l *2)
pred_spans_logits = outputs["pred_spans"].view(bsz, n_queries, 2, opt.max_v_l)
pred_span_scores, pred_spans = F.softmax(pred_spans_logits, dim=-1).max(-1) # 2 * (bsz, #queries, 2)
scores = torch.prod(pred_span_scores, 2) # (bsz, #queries)
pred_spans[:, 1] += 1
pred_spans *= opt.clip_length
# compose predictions
for idx, (meta, spans, score) in enumerate(zip(query_meta, pred_spans.cpu(), scores.cpu())):
if opt.span_loss_type == "l1":
spans = span_cxw_to_xx(spans) * meta["duration"]
spans = torch.clamp(spans, 0, meta["duration"])
# # (#queries, 3), [st(float), ed(float), score(float)]
cur_ranked_preds = torch.cat([spans, score[:, None]], dim=1).tolist()
if not opt.no_sort_results:
cur_ranked_preds = sorted(cur_ranked_preds, key=lambda x: x[2], reverse=True)
cur_ranked_preds = [[float(f"{e:.4f}") for e in row] for row in cur_ranked_preds]
cur_query_pred = dict(
qid=meta["qid"],
query=meta["query"],
vid=meta["vid"],
pred_relevant_windows=cur_ranked_preds,
pred_saliency_scores=saliency_scores[idx]
)
mr_res.append(cur_query_pred)
if criterion:
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_dict["loss_overall"] = float(losses) # for logging only
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
if opt.debug:
break
if write_tb and criterion:
for k, v in loss_meters.items():
tb_writer.add_scalar("Eval/{}".format(k), v.avg, epoch_i + 1)
if opt.dset_name in ['hl']:
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=150,
min_w_l=2, max_w_l=150, move_window_method="left",
process_func_names=("clip_ts", "round_multiple")
)
elif opt.dset_name in ['charadesSTA']:
if opt.v_feat_dim == 4096: # vgg
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=360,
min_w_l=12, max_w_l=360, move_window_method="left",
process_func_names=("clip_ts", "round_multiple")
)
else:
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=150,
min_w_l=2, max_w_l=60, move_window_method="left",
process_func_names=("clip_ts", "round_multiple")
)
else:
post_processor = PostProcessorDETR(
clip_length=opt.clip_length, min_ts_val=0, max_ts_val=50000,
min_w_l=0, max_w_l=50000, move_window_method="left",
process_func_names=(["round_multiple"])
)
mr_res = post_processor(mr_res)
return mr_res, loss_meters
def get_eval_res(model, eval_loader, opt, epoch_i, criterion, tb_writer):
"""compute and save query and video proposal embeddings"""
eval_res, eval_loss_meters = compute_mr_results(model, eval_loader, opt, epoch_i, criterion, tb_writer) # list(dict)
return eval_res, eval_loss_meters
def eval_epoch(model, eval_dataset, opt, save_submission_filename, epoch_i=None, criterion=None, tb_writer=None):
logger.info("Generate submissions")
model.eval()
if criterion is not None and eval_dataset.load_labels:
criterion.eval()
else:
criterion = None
if opt.dset_name == 'tacos':
shuffle = True
else:
shuffle = False
eval_loader = DataLoader(
eval_dataset,
collate_fn=start_end_collate,
batch_size=opt.eval_bsz,
num_workers=opt.num_workers,
shuffle=shuffle,
pin_memory=opt.pin_memory
)
# tvsum
if opt.dset_name in ['tvsum', 'youtube_uni']:
metrics, eval_loss_meters = compute_hl_results(model, eval_loader, opt, epoch_i, criterion, tb_writer)
# to match original save format
submission = [
{"brief": metrics}
]
submission_path = os.path.join(opt.results_dir, "latest_metric.jsonl")
save_jsonl(submission, submission_path)
return submission[0], submission[0], eval_loss_meters, [submission_path]
else:
submission, eval_loss_meters = get_eval_res(model, eval_loader, opt, epoch_i, criterion, tb_writer)
if opt.dset_name in ['charadesSTA', 'tacos', 'nlq']:
new_submission = []
for s in submission:
s.pop('pred_saliency_scores', None)
new_submission.append(s)
submission = new_submission
if opt.no_sort_results:
save_submission_filename = save_submission_filename.replace(".jsonl", "_unsorted.jsonl")
metrics, metrics_nms, latest_file_paths = eval_epoch_post_processing(
submission, opt, eval_dataset.data, save_submission_filename)
return metrics, metrics_nms, eval_loss_meters, latest_file_paths
def setup_model(opt):
"""setup model/optimizer/scheduler and load checkpoints when needed"""
logger.info("setup model/optimizer/scheduler")
model, criterion = build_model(opt)
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
criterion.to(opt.device)
param_dicts = [{"params": [p for n, p in model.named_parameters() if p.requires_grad]}]
optimizer = torch.optim.AdamW(param_dicts, lr=opt.lr, weight_decay=opt.wd)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_drop)
if opt.resume is not None:
logger.info(f"Load checkpoint from {opt.resume}")
checkpoint = torch.load(opt.resume, map_location="cpu")
from collections import OrderedDict
new_state_dict = OrderedDict()
if 'pt' in opt.resume[:-4]:
if 'asr' in opt.resume[:25]:
model.load_state_dict(checkpoint["model"])
else:
for k, v in checkpoint["model"].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# model.load_state_dict(checkpoint["model"])
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(checkpoint["model"])
if opt.resume_all:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
opt.start_epoch = checkpoint['epoch'] + 1
logger.info(f"Loaded model saved at epoch {checkpoint['epoch']} from checkpoint: {opt.resume}")
else:
logger.warning("If you intend to evaluate the model, please specify --resume with ckpt path")
return model, criterion, optimizer, lr_scheduler
def start_inference(train_opt=None, split=None, splitfile=None):
if train_opt is not None:
opt = TestOptions().parse(train_opt.a_feat_dir)
else:
opt = TestOptions().parse()
if split is not None:
opt.eval_split_name = split
if splitfile is not None:
opt.eval_path = splitfile
print(opt.eval_split_name)
print(opt.eval_path)
logger.info("Setup config, data and model...")
cudnn.benchmark = True
cudnn.deterministic = False
assert opt.eval_path is not None
if opt.eval_split_name == 'val':
loadlabel = True
else:
loadlabel = False
eval_dataset = StartEndDataset(
dset_name=opt.dset_name,
data_path=opt.eval_path,
v_feat_dirs=opt.v_feat_dirs,
q_feat_dir=opt.t_feat_dir,
q_feat_type="last_hidden_state",
max_q_l=opt.max_q_l,
max_v_l=opt.max_v_l,
ctx_mode=opt.ctx_mode,
data_ratio=opt.data_ratio,
normalize_v=not opt.no_norm_vfeat,
normalize_t=not opt.no_norm_tfeat,
clip_len=opt.clip_length,
max_windows=opt.max_windows,
load_labels=loadlabel, # opt.eval_split_name == "val",
span_loss_type=opt.span_loss_type,
txt_drop_ratio=0,
dset_domain=opt.dset_domain,
)
model, criterion, _, _ = setup_model(opt)
save_submission_filename = "hl_{}_submission.jsonl".format(
opt.eval_split_name)
# save_submission_filename = "inference_{}_{}_{}_preds.jsonl".format(
# opt.dset_name, opt.eval_split_name, opt.eval_id)
logger.info("Starting inference...")
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, eval_dataset, opt, save_submission_filename, criterion=criterion)
if opt.eval_split_name == 'val':
logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
from sys import argv
if __name__ == '__main__':
_,_,_,_,split,_,splitfile = argv
start_inference(split=split, splitfile=splitfile)
|