--- license: apache-2.0 --- # Pythia 6.9B Based Reward Model - base model: [andreaskoepf/pythia-6.9b-gpt4all-pretrain](https://huggingface.co./andreaskoepf/pythia-6.9b-gpt4all-pretrain) - wandb: https://wandb.ai/open-assistant/reward-model/runs/5xld9wmd - checkpoint: 3500 steps Compute was generously provided by [Stability AI](https://stability.ai/) ### How to use ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer # install open assistant model_training module (e.g. run `pip install -e .` in `model/` directory of open-assistant repository) import model_training.models.reward_model # noqa: F401 (registers reward model for AutoModel loading) model_name = "OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) input_text = "<|prompter|>Hi how are you?<|endoftext|><|assistant|>Hi, I am Open-Assistant a large open-source language model trained by LAION AI. How can I help you today?<|endoftext|>" inputs = tokenizer(input_text, return_tensors="pt") score = model(**inputs).logits[0].cpu().detach() print(score) ``` ### Datasets ``` datasets: - oasst_export: lang: "en,es,de,fr" input_file_path: 2023-03-27_oasst_research_ready_synth.jsonl.gz val_split: 0.1 - anthropic_rlhf: fraction: 0.1 max_val_set: 1000 - shp: max_val_set: 1000 - hellaswag: fraction: 0.5 max_val_set: 1000 - webgpt: val_split: 0.05 max_val_set: 1000 - hf_summary_pairs: fraction: 0.1 max_val_set: 250 ```