File size: 38,494 Bytes
371ff09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-small
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط
    النظيفة
  sentences:
  - رجل يقدم عرضاً
  - هناك رجل بالخارج قرب الشاطئ
  - رجل يجلس على أريكه
- source_sentence: رجل يقفز إلى سريره القذر
  sentences:
  - السرير قذر.
  - رجل يضحك أثناء غسيل الملابس
  - الرجل على القمر
- source_sentence: الفتيات بالخارج
  sentences:
  - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
  - فتيان يركبان في جولة متعة
  - ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة تتحدث
    إليهن
- source_sentence: الرجل يرتدي قميصاً أزرق.
  sentences:
  - رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء
    مع الماء في الخلفية.
  - كتاب القصص مفتوح
  - رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة
    شابة.
  sentences:
  - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
  - رجل يستلقي على وجهه على مقعد في الحديقة.
  - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 384
      type: sts-test-384
    metrics:
    - type: pearson_cosine
      value: 0.7883137447514015
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7971624317482785
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7845904338398069
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7939541836133244
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7882887522003604
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7971601260546269
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7883137483129774
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7971605875966696
      name: Spearman Dot
    - type: pearson_max
      value: 0.7883137483129774
      name: Pearson Max
    - type: spearman_max
      value: 0.7971624317482785
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.7851969391652749
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7968026743946358
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7852783784725356
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7935883492889713
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7882018230746569
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7963116553267949
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7786421988393841
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7867782644180616
      name: Spearman Dot
    - type: pearson_max
      value: 0.7882018230746569
      name: Pearson Max
    - type: spearman_max
      value: 0.7968026743946358
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.7754967709350954
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7933453885370457
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7832834632297865
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7907589269176767
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7867583047946054
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7935816990844704
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7317253736607925
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7335574962775742
      name: Spearman Dot
    - type: pearson_max
      value: 0.7867583047946054
      name: Pearson Max
    - type: spearman_max
      value: 0.7935816990844704
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.7625204599039478
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7837078735068292
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7752889433866854
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7790888579029828
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.777961287133872
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7815940757356076
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6685094830550401
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6621206899696827
      name: Spearman Dot
    - type: pearson_max
      value: 0.777961287133872
      name: Pearson Max
    - type: spearman_max
      value: 0.7837078735068292
      name: Spearman Max
---

# SentenceTransformer based on intfloat/multilingual-e5-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small) <!-- at revision 0a68dcd3dad5b4962a78daa930087728292b241d -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - Omartificial-Intelligence-Space/arabic-n_li-triplet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/E5-Matro")
# Run inference
sentences = [
    'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
    'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
    'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test-384`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7883     |
| **spearman_cosine** | **0.7972** |
| pearson_manhattan   | 0.7846     |
| spearman_manhattan  | 0.794      |
| pearson_euclidean   | 0.7883     |
| spearman_euclidean  | 0.7972     |
| pearson_dot         | 0.7883     |
| spearman_dot        | 0.7972     |
| pearson_max         | 0.7883     |
| spearman_max        | 0.7972     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7852     |
| **spearman_cosine** | **0.7968** |
| pearson_manhattan   | 0.7853     |
| spearman_manhattan  | 0.7936     |
| pearson_euclidean   | 0.7882     |
| spearman_euclidean  | 0.7963     |
| pearson_dot         | 0.7786     |
| spearman_dot        | 0.7868     |
| pearson_max         | 0.7882     |
| spearman_max        | 0.7968     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7755     |
| **spearman_cosine** | **0.7933** |
| pearson_manhattan   | 0.7833     |
| spearman_manhattan  | 0.7908     |
| pearson_euclidean   | 0.7868     |
| spearman_euclidean  | 0.7936     |
| pearson_dot         | 0.7317     |
| spearman_dot        | 0.7336     |
| pearson_max         | 0.7868     |
| spearman_max        | 0.7936     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7625     |
| **spearman_cosine** | **0.7837** |
| pearson_manhattan   | 0.7753     |
| spearman_manhattan  | 0.7791     |
| pearson_euclidean   | 0.778      |
| spearman_euclidean  | 0.7816     |
| pearson_dot         | 0.6685     |
| spearman_dot        | 0.6621     |
| pearson_max         | 0.778      |
| spearman_max        | 0.7837     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Omartificial-Intelligence-Space/arabic-n_li-triplet

* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 10.33 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.21 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.32 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
  | anchor                                                      | positive                                    | negative                            |
  |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------|
  | <code>شخص على حصان يقفز فوق طائرة معطلة</code>              | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> |
  | <code>أطفال يبتسمون و يلوحون للكاميرا</code>                | <code>هناك أطفال حاضرون</code>              | <code>الاطفال يتجهمون</code>        |
  | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code>        | <code>الصبي يتزلج على الرصيف</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### Omartificial-Intelligence-Space/arabic-n_li-triplet

* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                          | negative                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                           |
  | details | <ul><li>min: 5 tokens</li><li>mean: 21.86 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.22 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.2 tokens</li><li>max: 33 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                               | positive                                               | negative                                           |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------|
  | <code>امرأتان يتعانقان بينما يحملان حزمة</code>                                                                                                      | <code>إمرأتان يحملان حزمة</code>                       | <code>الرجال يتشاجرون خارج مطعم</code>             |
  | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> |
  | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code>                                                                             | <code>رجل يبيع الدونات لعميل</code>                    | <code>امرأة تشرب قهوتها في مقهى صغير</code>        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-384_spearman_cosine | sts-test-64_spearman_cosine |
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|
| 0.0344 | 200   | 13.1208       | -                            | -                            | -                            | -                           |
| 0.0688 | 400   | 9.1894        | -                            | -                            | -                            | -                           |
| 0.1033 | 600   | 8.0222        | -                            | -                            | -                            | -                           |
| 0.1377 | 800   | 7.2405        | -                            | -                            | -                            | -                           |
| 0.1721 | 1000  | 7.1622        | -                            | -                            | -                            | -                           |
| 0.2065 | 1200  | 6.4282        | -                            | -                            | -                            | -                           |
| 0.2409 | 1400  | 6.0936        | -                            | -                            | -                            | -                           |
| 0.2753 | 1600  | 5.99          | -                            | -                            | -                            | -                           |
| 0.3098 | 1800  | 5.6939        | -                            | -                            | -                            | -                           |
| 0.3442 | 2000  | 5.694         | -                            | -                            | -                            | -                           |
| 0.3786 | 2200  | 5.2366        | -                            | -                            | -                            | -                           |
| 0.4130 | 2400  | 5.2994        | -                            | -                            | -                            | -                           |
| 0.4474 | 2600  | 5.2079        | -                            | -                            | -                            | -                           |
| 0.4818 | 2800  | 5.0532        | -                            | -                            | -                            | -                           |
| 0.5163 | 3000  | 4.9978        | -                            | -                            | -                            | -                           |
| 0.5507 | 3200  | 5.1764        | -                            | -                            | -                            | -                           |
| 0.5851 | 3400  | 5.1315        | -                            | -                            | -                            | -                           |
| 0.6195 | 3600  | 5.0198        | -                            | -                            | -                            | -                           |
| 0.6539 | 3800  | 5.0308        | -                            | -                            | -                            | -                           |
| 0.6883 | 4000  | 5.1631        | -                            | -                            | -                            | -                           |
| 0.7228 | 4200  | 4.7916        | -                            | -                            | -                            | -                           |
| 0.7572 | 4400  | 4.363         | -                            | -                            | -                            | -                           |
| 0.7916 | 4600  | 3.2357        | -                            | -                            | -                            | -                           |
| 0.8260 | 4800  | 2.9915        | -                            | -                            | -                            | -                           |
| 0.8604 | 5000  | 2.8143        | -                            | -                            | -                            | -                           |
| 0.8949 | 5200  | 2.6125        | -                            | -                            | -                            | -                           |
| 0.9293 | 5400  | 2.5493        | -                            | -                            | -                            | -                           |
| 0.9637 | 5600  | 2.4991        | -                            | -                            | -                            | -                           |
| 0.9981 | 5800  | 2.163         | -                            | -                            | -                            | -                           |
| 1.0325 | 6000  | 0.0           | -                            | -                            | -                            | -                           |
| 1.0669 | 6200  | 0.0           | -                            | -                            | -                            | -                           |
| 1.1014 | 6400  | 0.0           | -                            | -                            | -                            | -                           |
| 1.1358 | 6600  | 0.0           | -                            | -                            | -                            | -                           |
| 1.1702 | 6800  | 0.0           | -                            | -                            | -                            | -                           |
| 1.2046 | 7000  | 0.0           | -                            | -                            | -                            | -                           |
| 1.2390 | 7200  | 0.0           | -                            | -                            | -                            | -                           |
| 1.2734 | 7400  | 0.0           | -                            | -                            | -                            | -                           |
| 1.3079 | 7600  | 0.0           | -                            | -                            | -                            | -                           |
| 1.3423 | 7800  | 0.0           | -                            | -                            | -                            | -                           |
| 1.3767 | 8000  | 0.0           | -                            | -                            | -                            | -                           |
| 1.4111 | 8200  | 0.0037        | -                            | -                            | -                            | -                           |
| 1.4455 | 8400  | 0.0372        | -                            | -                            | -                            | -                           |
| 1.4800 | 8600  | 0.0221        | -                            | -                            | -                            | -                           |
| 1.0229 | 8800  | 4.3738        | -                            | -                            | -                            | -                           |
| 1.0573 | 9000  | 6.338         | -                            | -                            | -                            | -                           |
| 1.0917 | 9200  | 6.2223        | -                            | -                            | -                            | -                           |
| 1.1261 | 9400  | 5.8673        | -                            | -                            | -                            | -                           |
| 1.1606 | 9600  | 5.5907        | -                            | -                            | -                            | -                           |
| 1.1950 | 9800  | 5.0307        | -                            | -                            | -                            | -                           |
| 1.2294 | 10000 | 4.9193        | -                            | -                            | -                            | -                           |
| 1.2638 | 10200 | 4.8798        | -                            | -                            | -                            | -                           |
| 1.2982 | 10400 | 4.401         | -                            | -                            | -                            | -                           |
| 1.3326 | 10600 | 4.2705        | -                            | -                            | -                            | -                           |
| 1.3671 | 10800 | 4.3023        | -                            | -                            | -                            | -                           |
| 1.4015 | 11000 | 4.1344        | -                            | -                            | -                            | -                           |
| 1.4359 | 11200 | 4.0464        | -                            | -                            | -                            | -                           |
| 1.4703 | 11400 | 4.0115        | -                            | -                            | -                            | -                           |
| 1.5047 | 11600 | 3.9206        | -                            | -                            | -                            | -                           |
| 1.5391 | 11800 | 4.0106        | -                            | -                            | -                            | -                           |
| 1.5736 | 12000 | 4.1365        | -                            | -                            | -                            | -                           |
| 1.6080 | 12200 | 4.0401        | -                            | -                            | -                            | -                           |
| 1.6424 | 12400 | 4.0602        | -                            | -                            | -                            | -                           |
| 1.6768 | 12600 | 4.076         | -                            | -                            | -                            | -                           |
| 1.7112 | 12800 | 3.97          | -                            | -                            | -                            | -                           |
| 1.7457 | 13000 | 3.7905        | -                            | -                            | -                            | -                           |
| 1.7801 | 13200 | 2.414         | -                            | -                            | -                            | -                           |
| 1.8145 | 13400 | 2.1811        | -                            | -                            | -                            | -                           |
| 1.8489 | 13600 | 2.1183        | -                            | -                            | -                            | -                           |
| 1.8833 | 13800 | 2.0578        | -                            | -                            | -                            | -                           |
| 1.9177 | 14000 | 2.0173        | -                            | -                            | -                            | -                           |
| 1.9522 | 14200 | 2.0093        | -                            | -                            | -                            | -                           |
| 1.9866 | 14400 | 1.9467        | -                            | -                            | -                            | -                           |
| 2.0210 | 14600 | 0.4674        | -                            | -                            | -                            | -                           |
| 2.0554 | 14800 | 0.0           | -                            | -                            | -                            | -                           |
| 2.0898 | 15000 | 0.0           | -                            | -                            | -                            | -                           |
| 2.1242 | 15200 | 0.0           | -                            | -                            | -                            | -                           |
| 2.1587 | 15400 | 0.0           | -                            | -                            | -                            | -                           |
| 2.1931 | 15600 | 0.0           | -                            | -                            | -                            | -                           |
| 2.2275 | 15800 | 0.0           | -                            | -                            | -                            | -                           |
| 2.2619 | 16000 | 0.0           | -                            | -                            | -                            | -                           |
| 2.2963 | 16200 | 0.0           | -                            | -                            | -                            | -                           |
| 2.3308 | 16400 | 0.0           | -                            | -                            | -                            | -                           |
| 2.3652 | 16600 | 0.0           | -                            | -                            | -                            | -                           |
| 2.3996 | 16800 | 0.0           | -                            | -                            | -                            | -                           |
| 2.4340 | 17000 | 0.0           | -                            | -                            | -                            | -                           |
| 2.4684 | 17200 | 0.0256        | -                            | -                            | -                            | -                           |
| 2.0114 | 17400 | 2.4155        | -                            | -                            | -                            | -                           |
| 2.0170 | 17433 | -             | 0.7933                       | 0.7968                       | 0.7972                       | 0.7837                      |


### Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->