---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: unsloth/gemma-7b
model-index:
- name: gemma_odia_7b_unsloth
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
# use google/gemma-7b if you have access
base_model: unsloth/gemma-7b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
# huggingface repo
datasets:
- path: OdiaGenAIdata/culturax-gemma-data
type: completion
val_set_size: 0.1
output_dir: ./gemma-odia-7b-pretrain-unsloth
hub_model_id: sam2ai/gemma_odia_7b_unsloth
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: gemma-completion-7b-odia-unsloth
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# gemma_odia_7b_unsloth
This model is a fine-tuned version of [unsloth/gemma-7b](https://huggingface.co./unsloth/gemma-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9914
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 32
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 39.5782 | 0.0 | 1 | 39.2579 |
| 7.2511 | 0.25 | 169 | 7.0771 |
| 4.2519 | 0.5 | 338 | 4.0654 |
| 3.7348 | 0.75 | 507 | 3.5937 |
| 3.4573 | 1.0 | 676 | 3.3126 |
| 3.4299 | 1.24 | 845 | 3.2429 |
| 3.4908 | 1.49 | 1014 | 3.2063 |
| 3.3588 | 1.74 | 1183 | 3.1614 |
| 3.3646 | 1.99 | 1352 | 3.1313 |
| 3.2672 | 2.23 | 1521 | 3.0885 |
| 3.2706 | 2.48 | 1690 | 3.0678 |
| 3.173 | 2.73 | 1859 | 3.0410 |
| 3.7319 | 2.98 | 2028 | 3.5392 |
| 3.3142 | 3.22 | 2197 | 3.1610 |
| 3.2931 | 3.47 | 2366 | 3.1339 |
| 3.3045 | 3.72 | 2535 | 3.0710 |
| 3.2423 | 3.97 | 2704 | 3.0920 |
| 3.2565 | 4.2 | 2873 | 3.0311 |
| 3.1167 | 4.45 | 3042 | 3.0039 |
| 3.1624 | 4.71 | 3211 | 3.0108 |
| 3.1697 | 4.96 | 3380 | 3.1008 |
| 3.1434 | 5.19 | 3549 | 2.9915 |
| 3.2301 | 5.44 | 3718 | 3.0033 |
| 3.1686 | 5.69 | 3887 | 2.9893 |
| 3.9959 | 5.95 | 4056 | 3.7561 |
| 3.3066 | 6.18 | 4225 | 3.1076 |
| 3.2567 | 6.43 | 4394 | 3.0679 |
| 3.1764 | 6.68 | 4563 | 3.0459 |
| 3.1848 | 6.93 | 4732 | 3.0342 |
| 3.181 | 7.17 | 4901 | 3.0279 |
| 3.1688 | 7.42 | 5070 | 3.0203 |
| 3.1474 | 7.67 | 5239 | 3.0131 |
| 3.1672 | 7.92 | 5408 | 3.0080 |
| 3.1202 | 8.16 | 5577 | 3.0036 |
| 3.1368 | 8.41 | 5746 | 2.9999 |
| 3.1104 | 8.66 | 5915 | 2.9968 |
| 3.1236 | 8.91 | 6084 | 2.9939 |
| 3.1055 | 9.15 | 6253 | 2.9924 |
| 3.1563 | 9.4 | 6422 | 2.9918 |
| 3.1373 | 9.65 | 6591 | 2.9914 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.40.0.dev0
- Pytorch 2.4.0.dev20240326+rocm6.0
- Datasets 2.18.0
- Tokenizers 0.15.0