--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: unsloth/gemma-7b model-index: - name: gemma_odia_7b_unsloth results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # use google/gemma-7b if you have access base_model: unsloth/gemma-7b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false # huggingface repo datasets: - path: OdiaGenAIdata/culturax-gemma-data type: completion val_set_size: 0.1 output_dir: ./gemma-odia-7b-pretrain-unsloth hub_model_id: sam2ai/gemma_odia_7b_unsloth adapter: qlora lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: gemma-completion-7b-odia-unsloth wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# gemma_odia_7b_unsloth This model is a fine-tuned version of [unsloth/gemma-7b](https://huggingface.co./unsloth/gemma-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 32 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 39.5782 | 0.0 | 1 | 39.2579 | | 7.2511 | 0.25 | 169 | 7.0771 | | 4.2519 | 0.5 | 338 | 4.0654 | | 3.7348 | 0.75 | 507 | 3.5937 | | 3.4573 | 1.0 | 676 | 3.3126 | | 3.4299 | 1.24 | 845 | 3.2429 | | 3.4908 | 1.49 | 1014 | 3.2063 | | 3.3588 | 1.74 | 1183 | 3.1614 | | 3.3646 | 1.99 | 1352 | 3.1313 | | 3.2672 | 2.23 | 1521 | 3.0885 | | 3.2706 | 2.48 | 1690 | 3.0678 | | 3.173 | 2.73 | 1859 | 3.0410 | | 3.7319 | 2.98 | 2028 | 3.5392 | | 3.3142 | 3.22 | 2197 | 3.1610 | | 3.2931 | 3.47 | 2366 | 3.1339 | | 3.3045 | 3.72 | 2535 | 3.0710 | | 3.2423 | 3.97 | 2704 | 3.0920 | | 3.2565 | 4.2 | 2873 | 3.0311 | | 3.1167 | 4.45 | 3042 | 3.0039 | | 3.1624 | 4.71 | 3211 | 3.0108 | | 3.1697 | 4.96 | 3380 | 3.1008 | | 3.1434 | 5.19 | 3549 | 2.9915 | | 3.2301 | 5.44 | 3718 | 3.0033 | | 3.1686 | 5.69 | 3887 | 2.9893 | | 3.9959 | 5.95 | 4056 | 3.7561 | | 3.3066 | 6.18 | 4225 | 3.1076 | | 3.2567 | 6.43 | 4394 | 3.0679 | | 3.1764 | 6.68 | 4563 | 3.0459 | | 3.1848 | 6.93 | 4732 | 3.0342 | | 3.181 | 7.17 | 4901 | 3.0279 | | 3.1688 | 7.42 | 5070 | 3.0203 | | 3.1474 | 7.67 | 5239 | 3.0131 | | 3.1672 | 7.92 | 5408 | 3.0080 | | 3.1202 | 8.16 | 5577 | 3.0036 | | 3.1368 | 8.41 | 5746 | 2.9999 | | 3.1104 | 8.66 | 5915 | 2.9968 | | 3.1236 | 8.91 | 6084 | 2.9939 | | 3.1055 | 9.15 | 6253 | 2.9924 | | 3.1563 | 9.4 | 6422 | 2.9918 | | 3.1373 | 9.65 | 6591 | 2.9914 | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0.dev0 - Pytorch 2.4.0.dev20240326+rocm6.0 - Datasets 2.18.0 - Tokenizers 0.15.0